零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 零指数幂(负指数幂和指数为1) > 正文 返回 打印

(1)计算:(2-3)0+|-3|-2-1-2sin30°(2)解方程:xx-2-1=1x2-4.-数学

[db:作者]  2019-03-25 00:00:00  零零社区

题文

(1)计算:(

2
-

3
)0+|-3|-2-1-2sin30°
(2)解方程:
x
x-2
-1=
1
x2-4
题型:解答题  难度:中档

答案

(1)(

2
-

3
)0+|-3|-2-1-2sin30°
=1+3-
1
2
-2×
1
2

=1+3-
1
2
-1
=
5
2


(2)方程两边同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=1,
解得:x=-
3
2

检验:当x=-
3
2
时,(x+2)(x-2)=-
7
4
≠0,即x=-
3
2
是原分式方程的解,
故原方程的解为:x=-
3
2

据专家权威分析,试题“(1)计算:(2-3)0+|-3|-2-1-2sin30°(2)解方程:xx-2-1=1x2-4.-数学-..”主要考查你对  零指数幂(负指数幂和指数为1),解分式方程,实数的运算,特殊角三角函数值  等考点的理解。关于这些考点的“档案”如下:

零指数幂(负指数幂和指数为1)解分式方程实数的运算特殊角三角函数值

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

考点名称:解分式方程

  • 解法:
    解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
    (1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
    (最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
    (2)解方程:解整式方程,得到方程的根;
    (3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
    否则,这个解不是原分式方程的解,是原分式方程的增根。
    如果分式本身约分了,也要带进去检验。
    在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
    一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
    注意:
    (1)注意去分母时,不要漏乘整式项。
    (2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
    (3)増根使最简公分母等于0。

    分式方程的特殊解法:
    换元法:
    换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  • 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
    解分式方程注意:
    ①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
    ②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
    ③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。

考点名称:实数的运算

  • 实数的运算:
    实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
    实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

    四则运算封闭性:
    实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

  • 实数的运算法则:
    1、加法法则:
    (1)同号两数相加,取相同的符号,并把它们的绝对值相加;
    (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
    可使用
    ①加法交换律:两个数相加,交换加数的位置,和不变;即:a+b=b+a;
    ②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变;即:(a+b)+c=a+(b+c)。

    2、减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b)

    3、乘法法则:
    (1)两数相乘,同号取正,异号取负,并把绝对值相乘。
    (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
    (3)乘法可使用
    ①乘法交换律:两个数相乘,交换因数的位置,积不变,即:ab=ba;
    ②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即:(ab)c=a(bc);
    ③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即:a(b+c)=ab+ac。

    4、除法法则:
    (1)两数相除,同号得正,异号得负,并把绝对值相除。
    (2)除以一个数等于乘以这个数的倒数。
    (3)0除以任何数都等于0,0不能做被除数。

    5、乘方:所表示的意义是n个a相乘,即an,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数,乘方与开方互为逆运算。

    实数的运算顺序:
    乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

考点名称:特殊角三角函数值

  • 特殊角三角函数值表:



http://www.00-edu.com/ks/shuxue/2/70/2019-03-25/902804.html十二生肖
十二星座