题文
[ ]
答案
据专家权威分析,试题“观察下列式子,正确的是[]A.a+3>3B.﹣2x(x﹣3y)=﹣2x+6yC.16y2﹣7y2=..”主要考查你对 整式的乘法,有理数的混合运算,整式的加减,不等式的性质 等考点的理解。关于这些考点的“档案”如下:
整式的乘法有理数的混合运算整式的加减不等式的性质
考点名称:整式的乘法
整式的乘法:包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘法法则:1、同底数的幂相乘:法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)2、幂的乘方:法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)3、积的乘方:法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)数学符号表示:(ab)n=anbn(其中n为正整数)4、单项式与单项式相乘:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。5、单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。6、多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。7、乘法公式:平方差公式:(a+b)·(a-b)=a2-b2,完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
考点名称:有理数的混合运算
考点名称:整式的加减
考点名称:不等式的性质
不等式的性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)或者说,不等式的基本性质有:①对称性;②传递性:③加法单调性:即同向不等式可加性:④乘法单调性:⑤同向正值不等式可乘性:⑥正值不等式可乘方:⑦正值不等式可开方:⑧倒数法则。
原理:①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。