题文
答案
据专家权威分析,试题“(1)=﹙﹚;(2)若在实数范围内有意义,则x的取值范围是﹙﹚.-八年级数..”主要考查你对 整式的乘法,平方差公式,二次根式的定义 等考点的理解。关于这些考点的“档案”如下:
整式的乘法平方差公式二次根式的定义
考点名称:整式的乘法
整式的乘法:包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘法法则:1、同底数的幂相乘:法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)2、幂的乘方:法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)3、积的乘方:法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)数学符号表示:(ab)n=anbn(其中n为正整数)4、单项式与单项式相乘:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。5、单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。6、多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。7、乘法公式:平方差公式:(a+b)·(a-b)=a2-b2,完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
考点名称:平方差公式
常见错误:平方差公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难以掌握。
注意事项:1、公式的左边是个两项式的积,有一项是完全相同的。2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
考点名称:二次根式的定义
二次根式判定:①二次根式必须有二次根号,如,等;②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;③二次根式定义中a≥0 是定义组成的一部分,不能省略;④二次根式是一个非负数;⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。二次根式的应用:主要体现在两个方面:(1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。