题文
答案
据专家权威分析,试题“若一个三角形的三边长为a,b,c,且满足a2+2b2+c2-2ab-2bc=0,试..”主要考查你对 因式分解,等边三角形 等考点的理解。关于这些考点的“档案”如下:
因式分解等边三角形
考点名称:因式分解
因式分解中的四个注意:①首项有负常提负,②各项有“公”先提“公”,③某项提出莫漏1,④括号里面分到“底”。现举下例,可供参考。例:把-a2-b2+2ab+4分解因式。解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-[(a-b)2-4]=-(a-b+2)(a-b-2)这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的;
这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。
分解步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解④分解因式,必须进行到每一个多项式因式都不能再分解为止。也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”
分解因式技巧掌握:①分解因式是多项式的恒等变形,要求等式左边必须是多项式②分解因式的结果必须是以乘积的形式表示③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数④分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
主要方法:1.提取公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。提公因式法基本步骤:(1)找出公因式(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式③提完公因式后,另一因式的项数与原多项式的项数相同。2.公式法:把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:平方差公式:a2-b2=(a+b)·(a-b);完全平方式:a2±2ab+b2=(a±b)2;立方差公式:。3.分组分解法:利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d)+b·(c+d)=(a+b)·(c+d)其原则:①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。4.十字相乘法:a2+(p+q)·a+p·q=(a+p)·(a+q)。5.解方程法:通过解方程来进行因式分解,如x2+2x+1=0 ,解,得x1=-1,x2=-1,就得到原式=(x+1)×(x+1)6.待定系数法:首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例:分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 a=1,b=1,c=-2,d=-4则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
考点名称:等边三角形
性质:①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)
判定方法:①三边相等的三角形是等边三角形(定义)②三个内角都相等(为60度)的三角形是等边三角形③有一个角是60度的等腰三角形是等边三角形④ 两个内角为60度的三角形是等边三角形说明:可首先考虑判断三角形是等腰三角形。等边三角形的性质与判定理解:首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。