零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 平方差公式 > 正文 返回 打印

一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是______.-数学

[db:作者]  2019-04-04 00:00:00  零零社区

题文

一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是______.
题型:填空题  难度:偏易

答案

设这两个数分别m、n,
设m>n,
即智慧数=m2-n2=(m+n)(m-n),
又∵mn是非0的自然数,
∴m+n和m-n就是两个自然数,
要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个非0自然数的和与差.
(k+1)2-k2=2k+1,(k+1)2-(k-1)2=4k,每个大于1的奇数与每个大于4且是4的倍数的数都是智慧数,而被4除余数为2的偶数都不是智慧数,最小智慧数为3,从5开始,智慧数是5,7,8,9,11,12,13,15,16,17,19,20…即2个奇数,1个4的倍数,3个一组依次排列下去.
显然1不是“智慧数”,而大于1的奇数2k+1=(k+1)2-k2,都是“智慧数”. 因为:4k=(k+1)2-(k-1)2,所以大于4且能被4整除的数都是“智慧数”而4不是“智慧数”,由于x2-y2=(x+y)×(x-y)(其中x、y∈N),当x,y奇偶性相同时,(x+y)×(x-y)被4整除.当x,y奇偶性相异时,(x+y)*(x-y)为奇数,所以形如4k+2的数不是“智慧数”在自然数列中前四个自然数中只有3是“智慧数”.此后每连续四个数中有三个“智慧数”.
由于1989=3×663,
所以4×664=2656是第1990个“智慧数”.
故答案为:2656.

据专家权威分析,试题“一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然..”主要考查你对  平方差公式  等考点的理解。关于这些考点的“档案”如下:

平方差公式

考点名称:平方差公式

  • 表达式
    (a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。

  • 特点:
    (1)左边是两项式相乘,一项完全相同,另一项互为相反数;
    (2)右边是乘方中两项的平方差。
    注:
    (1)公式中的a和b可以是具体的数也可以是单项式或多项式;
    (2)不能直接应用公式的,要善于转化变形,运用公式。

  • 常见错误:
    平方差公式中常见错误有:
    ①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难以掌握。

    注意事项:
    1、公式的左边是个两项式的积,有一项是完全相同的。
    2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
    3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。



http://www.00-edu.com/ks/shuxue/2/75/2019-04-04/932308.html十二生肖
十二星座