题文
答案
据专家权威分析,试题“阅读下面一段材料,回答问题.我国宋朝数学家杨辉在他的著作《详解..”主要考查你对 完全平方公式,探索规律 等考点的理解。关于这些考点的“档案”如下:
完全平方公式探索规律
考点名称:完全平方公式
(1)公式中的a、b可以是单项式,也就可以是多项式。(2)不能直接应用公式的,要善于转化变形,运用公式。该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
结构特征:1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2.左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.记忆口诀:首平方,尾平方,2倍首尾。
使用误解:①漏下了一次项;②混淆公式;③运算结果中符号错误;④变式应用难于掌握。
注意事项:1、左边是一个二项式的完全平方。2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。
完全平方公式的基本变形:(一)、变符号例:运用完全平方公式计算:(1)(-4x+3y)2(2)(-a-b)2分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。解答:(1)16x2-24xy+9y2(2)a2+2ab+b2
(二)、变项数:例:计算:(3a+2b+c)2分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。解答:9a2+12ab+6ac+4b2+4bc+c2
(三)、变结构例:运用公式计算:(1)(x+y)(2x+2y)(2)(a+b)(-a-b)(3)(a-b)(b-a)分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即(1)(x+y)(2x+2y)=2(x+y)2(2) (a+b)(-a-b)=-(a+b)2(3) (a-b)(b-a)=-(a-b)2
考点名称:探索规律
探索规律题题型和解题思路:1.探索条件型:结论明确,需要探索发现使结论成立的条件的题目;探索条件型往往是针对条件不充分、有变化或条件的发散性等情况,解答时要注意全面性,类似于讨论;解题应从结论着手,逆推其条件,或从反面论证,解题过程类似于分析法。2.探索结论型:给定条件,但无明确的结论或结论不唯一,而要探索发现与之相应的结论的题目;探索结论型题的特点是结论有多种可能,即它的结论是发散的、稳定的、隐蔽的和存在的;探索结论型题的一般解题思路是:(1)从特殊情形入手,发现一般性的结论;(2)在一般的情况下,证明猜想的正确性;(3)也可以通过图形操作验证结论的正确性或转化为几个熟悉的容易解决的问题逐个解决。3.探索规律型:在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;图形运动题的关键是抓住图形的本质特征,并仿照原题进行证明。在探索递推时,往往从少到多,从简单到复杂,要通过比较和分析,找出每次变化过程中都具有规律性的东西和不易看清的图形变化部分。4.探索存在型:在一定的条件下,需探索发现某种数学关系是否存在的题目.而且探索题往往也是分类讨论型的习题,无论从解题的思路还是书写的格式都应该让学生明了基本的规范,这也是数学学习能力要求。探索存在型题的结论只有两种可能:存在或不存在;存在型问题的解题步骤是:①假设存在;②推理得出结论(若得出矛盾,则结论不存在;若不得出矛盾,则结论存在)。 解答探索题型,必须在缜密审题的基础上,利用学具,按照要求在动态的过程中,通过归纳、想象、猜想,进行规律的探索,提出观点与看法,利用旧知识的迁移类比发现接替方法,或从特殊、简单的情况入手,寻找规律,找到接替方法;解答时要注意方程思想、函数思想、转化思想、分类讨论思想、数形结合思想在解题中的应用;因此其成果具有独创性、新颖性,其思维必须严格结合给定条件结论,培养了学生的发散思维,这也是数学综合应用的能力要求。