零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 完全平方公式 > 正文 返回 打印

已知实数a,b满足a2+b2=1,则a4+ab+b4的最小值为()A.-18B.0C.1D.98-数学

[db:作者]  2019-04-04 00:00:00  互联网

题文

已知实数a,b满足a2+b2=1,则a4+ab+b4的最小值为(  )
A.-
1
8
B.0C.1D.
9
8
题型:单选题  难度:中档

答案

∵(a-b)2=a2-2ab+b2≥0,
∴2|ab|≤a2+b2=1,
∴-
1
2
≤ab≤
1
2

令y=a4+ab+b4=(a2+b22-2a2b2+ab=-2a2b2+ab+1=-2(ab-
1
4
2+
9
8

当-
1
2
≤ab≤
1
4
时,y随ab的增大而增大,
1
4
≤ab≤
1
2
时,y随ab的增大而减小,
故当ab=-
1
2
时,a4+ab+b4的最小值,为-2(-
1
2
-
1
4
2+
9
8
=-2×
9
16
+
9
8
=0,
即a4+ab+b4的最小值为0,当且仅当|a|=|b|时,ab=-
1
2
,此时a=-

2
2
,b=

2
2
,或 a=

2
2
,b=-

2
2

故选B.

据专家权威分析,试题“已知实数a,b满足a2+b2=1,则a4+ab+b4的最小值为()A.-18B.0C.1D...”主要考查你对  完全平方公式,二次函数的最大值和最小值  等考点的理解。关于这些考点的“档案”如下:

完全平方公式二次函数的最大值和最小值

考点名称:完全平方公式

  • 完全平方公式:
    两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
    (a+b)2=a2+2ab+b2
    (a-b)2=a2-2ab+b2

    (1)公式中的a、b可以是单项式,也就可以是多项式。
    (2)不能直接应用公式的,要善于转化变形,运用公式。
    该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

  • 结构特征:
    1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
    2.左边两项符号相同时,右边各项全用“+”号连接;
    左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
    3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

    记忆口诀:首平方,尾平方,2倍首尾。

  • 使用误解:
    ①漏下了一次项;
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难于掌握。

    注意事项:
    1、左边是一个二项式的完全平方。
    2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
    3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。

  • 完全平方公式的基本变形:
    (一)、变符号
    例:运用完全平方公式计算:
    (1)(-4x+3y)2
    (2)(-a-b)2
    分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
    解答:
    (1)16x2-24xy+9y2
    (2)a2+2ab+b2

    (二)、变项数:
    例:计算:(3a+2b+c)2
    分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
    解答:9a2+12ab+6ac+4b2+4bc+c2

    (三)、变结构
    例:运用公式计算:
    (1)(x+y)(2x+2y)
    (2)(a+b)(-a-b)
    (3)(a-b)(b-a)
    分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
    (1)(x+y)(2x+2y)=2(x+y)2
    (2) (a+b)(-a-b)=-(a+b)2
    (3) (a-b)(b-a)=-(a-b)2

考点名称:二次函数的最大值和最小值

  • 二次函数的最值:
    1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
    当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
    也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
    2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2 。



http://www.00-edu.com/ks/shuxue/2/76/2019-04-04/937694.html十二生肖
十二星座