零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 完全平方公式 > 正文 返回 打印

探究题:(1)观察下列各式:113=213;214=314;315=415.①猜想416的变形结果并验证;②针对上述各式反映的规律,给出用n(n为任意自然数,且n≥1)表示的等式,并进行证明.(2)把阅读-数学

[db:作者]  2019-04-04 00:00:00  互联网

题文

探究题:
(1)观察下列各式:

1
1
3
=2

1
3

2
1
4
=3

1
4

3
1
5
=4

1
5

①猜想

4
1
6
的变形结果并验证;
②针对上述各式反映的规律,给出用n(n为任意自然数,且n≥1)表示的等式,并进行证明.
(2)把阅读下面的解题过程:
已知实数a、b满足a+b=8,ab=15,且a>b,试求a-b的值.
∵a+b=8,ab=15
∴(a+b)2=a2+2ab+b2=64
∴a2+b2=34
∴(a-b)2=a2-2ab+b2=34-30=4
∴a-b=

4
=2.
请你仿照上面的解题过程,解答下面的问题:已知实数x满足x+
1
x
=

8
,且x>
1
x
,试求x-
1
x
的值.
题型:解答题  难度:中档

答案

(1)①猜想:

4
1
6
=5

1
6
,验证如下:
左边=

25
6
=5

1
6
=右边,等式成立;
②根据规律,可以表示为:

n+
1
n+2
=(n+1)

1
n+2
,验证如下:
左边=

n2+2n+1
n+2
=

(n+1)2
n+2
=(n+1)

1
n+2
=右边,等式成立;

(2)∵x+
1
x
=

8

∴(x-
1
x
2=(x+
1
x
2-4=8-4=4
又x>
1
x

∴x-
1
x
=2.

据专家权威分析,试题“探究题:(1)观察下列各式:113=213;214=314;315=415.①猜想416的变..”主要考查你对  完全平方公式,最简二次根式  等考点的理解。关于这些考点的“档案”如下:

完全平方公式最简二次根式

考点名称:完全平方公式

  • 完全平方公式:
    两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
    (a+b)2=a2+2ab+b2
    (a-b)2=a2-2ab+b2

    (1)公式中的a、b可以是单项式,也就可以是多项式。
    (2)不能直接应用公式的,要善于转化变形,运用公式。
    该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

  • 结构特征:
    1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
    2.左边两项符号相同时,右边各项全用“+”号连接;
    左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
    3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

    记忆口诀:首平方,尾平方,2倍首尾。

  • 使用误解:
    ①漏下了一次项;
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难于掌握。

    注意事项:
    1、左边是一个二项式的完全平方。
    2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
    3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。

  • 完全平方公式的基本变形:
    (一)、变符号
    例:运用完全平方公式计算:
    (1)(-4x+3y)2
    (2)(-a-b)2
    分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
    解答:
    (1)16x2-24xy+9y2
    (2)a2+2ab+b2

    (二)、变项数:
    例:计算:(3a+2b+c)2
    分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
    解答:9a2+12ab+6ac+4b2+4bc+c2

    (三)、变结构
    例:运用公式计算:
    (1)(x+y)(2x+2y)
    (2)(a+b)(-a-b)
    (3)(a-b)(b-a)
    分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
    (1)(x+y)(2x+2y)=2(x+y)2
    (2) (a+b)(-a-b)=-(a+b)2
    (3) (a-b)(b-a)=-(a-b)2

考点名称:最简二次根式

  • 最简二次根式定义:
    被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
    有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

  • 最简二次根式同时满足下列三个条件:
    (1)被开方数的因数是整数,因式是整式;
    (2)被开方数中不含有能开的尽的因式;
    (3)被开方数不含分母。

  • 最简二次根式判定:
    ①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
    ②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

    化二次根式为最简二次根式的方法和步骤:
    ①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
    ②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。



http://www.00-edu.com/ks/shuxue/2/76/2019-04-04/938475.html十二生肖
十二星座