首页 > 考试 > 数学 > 初中数学 > 整式的加减乘除混合运算 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
证明:如图:将桌边的正方形顶点从A开始: 按逆时针方向依次编号为0,1,0,1…,0,1, ∵m、n均为奇数, ∴点B的编号必为1,点C的编号必为0,点D的编号必为1. 由于桌球从A点以45°角射出,碰到桌边也以45°角反弹, 当桌球反弹至邻边时,射线与两边桌边围成一个等腰直角三角形,该等腰直角三角形的斜边两端点也就是球的射线的两端点编号必相同, (如图中射线EF,等腰Rt△ECF中,∵EC=CF,∴从E经H、C、K到F,编号变为偶数次,E与F的编号必相同)…: 当桌球反弹至对边时,球的射线的两个端点的编号必也相同(如图中射线PG,因为PH=HG=CD,HC+DG,从P经路径ECFD到G,编号也变了偶数次,P与G的编号必也相同). 综上,不论经过多少次的反弹,桌球在桌边碰到的点的编号均为与A点的编号相同,而A点的编号为0, 所以桌球不可能落入编号为1的D袋中. |
据专家权威分析,试题“一张台面为长方形ABCD的台球桌,只有四个角袋(分别以台面顶点A、..”主要考查你对 整式的加减乘除混合运算 等考点的理解。关于这些考点的“档案”如下:
整式的加减乘除混合运算
考点名称:整式的加减乘除混合运算
http://www.00-edu.com/ks/shuxue/2/77/2019-04-04/945028.html十二生肖十二星座