零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 分式的定义 > 正文 返回 打印

下列判断中,正确的有[]A、分式的分子一定含有字母B、只要分式的分子为零,则分式的值为零。C、只要分式的分母为零,则分式必无意义。D、不是分式而是整式。-八年级数学

[db:作者]  2019-04-04 00:00:00  互联网

题文

下列判断中,正确的有
[     ]
A、分式的分子一定含有字母
B、只要分式的分子为零,则分式的值为零。
C、只要分式的分母为零,则分式必无意义。
D、不是分式而是整式。
题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“下列判断中,正确的有[]A、分式的分子一定含有字母B、只要分式的..”主要考查你对  分式的定义 ,整式的定义  等考点的理解。关于这些考点的“档案”如下:

分式的定义 整式的定义

考点名称:分式的定义

  • 分式的定义:
    一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。
    其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。
    注:
    (1)分式的分母中必须含有字母;
    (2)分母的值不能为零,如果分母的值为零,那么分式无意义。

  • 分式的概念包括3个方面:
    ①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;
    ②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
    ③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

    分式有意义的条件:
    (1)分式有意义条件:分母不为0;
    (2)分式无意义条件:分母为0;
    (3)分式值为0条件:分子为0且分母不为0;
    (4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负 。

  • 分式的区别概念:
    分式与分数的区别与联系:
    a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成(B≠0)的形式;
    b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。

    整式和分式统称为有理式。
    带有根号且根号下含有字母的式子叫做无理式。
    无限不循环小数也是无理式
    无理式和有理式统称代数式

考点名称:整式的定义

  • 整式:
    是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中被除数不能含有字母。单项式和多项式统称为整式。
    代数式中的一种有理式。不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。

  • 整式的组成性质:
    1.单项式
    (1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。
    注意:数与字母之间是乘积关系。
    (2)单项式的系数:单项式中的字母因数叫做单项式的系数。
    如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1。
    (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

    2.多项式
    (1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。
    (2)单项式的次数:单项式中,次数最高的项的次数,就是这个多项式的次数。
    (3)多项式的排列:
    1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
    2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
    由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。

    为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。
    在做多项式的排列的题时注意:
    (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
    (2)有两个或两个以上字母的多项式,排列时,要注意:
    a.先确认按照哪个字母的指数来排列。
    b.确定按这个字母向里排列,还是生里排列。
    (3)整式:
    单项式和多项式统称为整式。
    (4)同类项的概念:
    所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。

    掌握同类项的概念时注意:
    1.判断几个单项式或项,是否是同类项,就要掌握两个条件:
    ①所含字母相同。
    ②相同字母的次数也相同。
    2.同类项与系数无关,与字母排列的顺序也无关。
    3.几个常数项也是同类项。
    (5)合并同类项:
    1.合并同类项的概念:
    把多项式中的同类项合并成一项叫做合并同类项。
    2.合并同类项的法则:
    同类项的系数相加,所得结果作为系数,字母和字母是指数不变。
    3.合并同类项步骤:
    ⑴.准确的找出同类项。
    ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
    ⑶.写出合并后的结果。

    在掌握合并同类项时注意:
    1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
    2.不要漏掉不能合并的项。
    3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
    合并同类项的关键:正确判断同类项。

  • 整式的计算:
    1. 单项式乘以单项式,系数与系数相乘的积作为积的系数,相同字母底数不变,指数相加,单独的字母不变,仍作为积的一个因式。
    2.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所有的项相加。
    3.先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
    4.数字与数字相除,相同字母的进行相除,对于只在被除数中拥有的字母包括字母的指数一起作为商的一个因式。
    5.多项式除以单项式,先把这个多项式分别除以这个单项式,再把所得的商相加 。
    6.多项式除以多项式的一般步骤:多项式除以多项式,一般用竖式进行演算。
    (1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.
    (2)用除式的第一项去除被除式的第一项,得商式的第一项.
    (3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),从被除式中减去这个积.
    (4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式
    如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除.
    (5)如果被除式能分解因式且有因式与除式中的因式相同的,可以把被除式、除式分解因式。
    最重要的是必注意各项系数的符号。

    整式的四则运算:
    整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。
    加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。
    1. 整式的加减
    合并同类项是重点,也是难点。合并同类项时要注意以下三点:
    ①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:字母和字母指数;
    ②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,多项式的项数会减少,达到化简多项式的目的;
    ③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。
    2. 整式的乘除
    重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握。因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。
    整式四则运算的主要题型有:
    (1)单项式的四则运算
    此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。
    (2)单项式与多项式的运算
    此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。



http://www.00-edu.com/ks/shuxue/2/78/2019-04-04/943374.html十二生肖
十二星座