零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 分式的加减 > 正文 返回 打印

计算:(1)化简:x2x-1-x-1(2)解方程:1-x2-x-2=1x-2.-数学

[db:作者]  2019-04-08 00:00:00  零零社区

题文

计算:
(1)化简:
x2
x-1
-x-1
(2)解方程:
1-x
2-x
-2=
1
x-2
题型:解答题  难度:中档

答案

(1)原式=
x2-(x+1)(x-1)
x-1
=
1
x-1

(2)去分母得:x-1-2(x-2)=1,
去括号得:x-1-2x+4=1,
解得:x=2,
经检验x=2是增根,原分式方程无解.

据专家权威分析,试题“计算:(1)化简:x2x-1-x-1(2)解方程:1-x2-x-2=1x-2.-数学-”主要考查你对  分式的加减,解分式方程  等考点的理解。关于这些考点的“档案”如下:

分式的加减解分式方程

考点名称:分式的加减

  • 分式的加减法则:
    同分母的分式相加减,分母不变,把分子相加减;
    异分母的分式相加减,先通分,变为同分母分式,然后再加减。
    用式子表示为:

  • 分式的加减要求:
    ①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
    ②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。

考点名称:解分式方程

  • 解法:
    解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
    (1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
    (最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
    (2)解方程:解整式方程,得到方程的根;
    (3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
    否则,这个解不是原分式方程的解,是原分式方程的增根。
    如果分式本身约分了,也要带进去检验。
    在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
    一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
    注意:
    (1)注意去分母时,不要漏乘整式项。
    (2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
    (3)増根使最简公分母等于0。

    分式方程的特殊解法:
    换元法:
    换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  • 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
    解分式方程注意:
    ①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
    ②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
    ③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。



http://www.00-edu.com/ks/shuxue/2/83/2019-04-08/962932.html十二生肖
十二星座