零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 解分式方程 > 正文 返回 打印

阅读下列材料:关于x的方程:x+1x=c+1c的解是x1=c,x2=1c;x-1x=c-1c(即x+-1x=c+-1c)的解是x1=cx2=-1c;x+2x=c+2c的解是x1=c,x2=2c;x+3x=c+3c的解是x1=c,x2=3c;…(1)请观察-数学

[db:作者]  2019-04-08 00:00:00  零零社区

题文

阅读下列材料:
关于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
;x-
1
x
=c-
1
c
(即x+
-1
x
=c+
-1
c
)的解是x1=cx2=-
1
c
;x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
;x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c
;…
(1)请观察上述方程与解的特征,比较关于x的方程x+
m
x
=c+
m
c
(m≠0)与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.
(2)由上述的观察、比较、猜想、验证,可以得出结论:
如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:x+
2
x-1
=a+
2
a-1
题型:解答题  难度:中档

答案

(1)猜想x+
m
x
=c+
m
c
(m≠0)的解是x1=c,x2=
m
c

验证:当x=c时,方程左边=c+
m
c
,方程右边=c+
m
c

∴方程成立;
当x=
m
c
时,方程左边=
m
c
+c,方程右边=c+
m
c

∴方程成立;
∴x+
m
x
=c+
m
c
(m≠0)的解是x1=c,x2=
m
c


(2)由x+
2
x-1
=a+
2
a-1
得x-1+
2
x-1
=a-1+
2
a-1

∴x-1=a-1,x-1=
2
a-1

∴x1=a,x2=
a+1
a-1

据专家权威分析,试题“阅读下列材料:关于x的方程:x+1x=c+1c的解是x1=c,x2=1c;x-1x=c-..”主要考查你对  解分式方程  等考点的理解。关于这些考点的“档案”如下:

解分式方程

考点名称:解分式方程

  • 解法:
    解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
    (1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
    (最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
    (2)解方程:解整式方程,得到方程的根;
    (3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
    否则,这个解不是原分式方程的解,是原分式方程的增根。
    如果分式本身约分了,也要带进去检验。
    在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
    一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
    注意:
    (1)注意去分母时,不要漏乘整式项。
    (2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
    (3)増根使最简公分母等于0。

    分式方程的特殊解法:
    换元法:
    换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  • 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
    解分式方程注意:
    ①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
    ②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
    ③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。



http://www.00-edu.com/ks/shuxue/2/85/2019-04-08/979353.html十二生肖
十二星座