零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 分式方程的应用 > 正文 返回 打印

金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书,从投标书中得知,甲单独完成这项工程所需天数是乙单独完成这项工程所需天数的23;若由甲-数学

[db:作者]  2019-04-08 00:00:00  互联网

题文

金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书,从投标书中得知,甲单独完成这项工程所需天数是乙单独完成这项工程所需天数的
2
3
;若由甲队先做20天,剩下的工程再由甲、乙两队合作30天可以完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元,为缩短工期以减少对住户的影响,拟安排甲、乙两个工程队合作完成这项工程,则工程预算的费用是否够用?若不够用,需追加预算费用多少万元?请给出你的判断并说明理由.
题型:解答题  难度:中档

答案

(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要
2
3
x天,则:
20
2
3
x
+30(
1
2x
3
+
1
x
)=1,
解之得x=105.
经检验:是所列方程的根且符合题意的,
2
3
x=
2
3
×105=70,
故甲、乙两队单独完成这项工程各需70天、105天.
(2)设甲、乙两队合作,完成这项工程需y天,则:
y(
1
70
+
1
105
)=1,
解得y=42,
需要施工费用 (0.84+0.56)×42=58.8(万元).
∵58.8>50,
∴工程预算的费用不够用,需追加8.8万元.

据专家权威分析,试题“金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙..”主要考查你对  分式方程的应用  等考点的理解。关于这些考点的“档案”如下:

分式方程的应用

考点名称:分式方程的应用

  • 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
    列分式方程解应用题的一般步骤是:
    ①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
    ②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
    ③列:找出相等关系,列出分式方程;
    ④解:解这个分式方程;
    ⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
    ⑥答:写出答案。

    例题
    南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
    设普通车速度是x千米每小时则直达车是1.5x
    由题意得:
    828/x-828/1.5x=6 ,
    (828×1.5-828)/1.5x=6 ,
    414/1.5=6x,
    x=46, 1.5x=69
    答:普通车速度是46千米每小时,直达车是69千米每小时。

    无解的含义:
    1.解为增根。
    2.整式方程无解。(如:0x不等于0.)

  • 用分式解应用题的常见题型:
    (1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
    (2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
    (3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。



http://www.00-edu.com/ks/shuxue/2/86/2019-04-08/984191.html十二生肖
十二星座