首页 > 考试 > 数学 > 初中数学 > 分式方程的应用 > 正文 | 返回 打印 |
|
题型:解答题 难度:中档
答案
设步行的速度是x千米/小时,
x=8, 经检验x=8是分式方程的解. 则步行的速度是8千米每小时. |
据专家权威分析,试题“汽车比步行每小时快24千米,自行车每小时比步行快12千米,某人从..”主要考查你对 分式方程的应用 等考点的理解。关于这些考点的“档案”如下:
分式方程的应用
考点名称:分式方程的应用
列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
列分式方程解应用题的一般步骤是:
①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
③列:找出相等关系,列出分式方程;
④解:解这个分式方程;
⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
⑥答:写出答案。
例题
南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
设普通车速度是x千米每小时则直达车是1.5x
由题意得:
828/x-828/1.5x=6 ,
(828×1.5-828)/1.5x=6 ,
414/1.5=6x,
x=46, 1.5x=69
答:普通车速度是46千米每小时,直达车是69千米每小时。
无解的含义:
1.解为增根。
2.整式方程无解。(如:0x不等于0.)
用分式解应用题的常见题型:
(1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
(2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
(3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。
http://www.00-edu.com/ks/shuxue/2/86/2019-04-08/984249.html十二生肖十二星座