题文
答案
据专家权威分析,试题“由于受市场负面传闻的影响,4月初某地猪肉价格大幅度下调,下调后..”主要考查你对 分式方程的应用,一元二次方程的应用 等考点的理解。关于这些考点的“档案”如下:
分式方程的应用一元二次方程的应用
考点名称:分式方程的应用
列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。列分式方程解应用题的一般步骤是:①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;③列:找出相等关系,列出分式方程;④解:解这个分式方程;⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;⑥答:写出答案。例题南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.设普通车速度是x千米每小时则直达车是1.5x由题意得:828/x-828/1.5x=6 ,(828×1.5-828)/1.5x=6 ,414/1.5=6x, x=46, 1.5x=69答:普通车速度是46千米每小时,直达车是69千米每小时。无解的含义:1.解为增根。2.整式方程无解。(如:0x不等于0.)
用分式解应用题的常见题型:(1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。(2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。(3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。
考点名称:一元二次方程的应用
列一元二次次方程组解应用题的一般步骤:可概括为“审、设、列、解、答”五步,即:(1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;(2)设:是指设未知数;(3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;(4)解:解这个方程,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。提示:①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。常见题型公式:工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率×工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。
利润赢亏问题 销售问题中常出现的量有:进价、售价、标价、利润等 有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 商品利润率=商品利润/商品进价 商品售价=商品标价×折扣率
存款利率问题:利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)
行程问题: 基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间, 路程=速度×时间。 ①相遇问题:快行距+慢行距=原距; ②追及问题:快行距-慢行距=原距; ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度, 逆水(风)速度=静水(风)速度-水流(风)速度