零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 分式方程的应用 > 正文 返回 打印

一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的-数学

[db:作者]  2019-04-08 00:00:00  互联网

题文

一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
题型:解答题  难度:中档

答案

(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.
根据题意,得
1
x
+
1
1.5x
=
1
12

解得x=20,
经检验知x=20是方程的解且符合题意.
1.5x=30
故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;

(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,
根据题意得12(y+y-1500)=102000,解得y=5000,
甲公司单独完成此项工程所需的施工费:20×5000=100000(元);
乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);
故甲公司的施工费较少.

据专家权威分析,试题“一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000..”主要考查你对  分式方程的应用  等考点的理解。关于这些考点的“档案”如下:

分式方程的应用

考点名称:分式方程的应用

  • 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
    列分式方程解应用题的一般步骤是:
    ①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
    ②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
    ③列:找出相等关系,列出分式方程;
    ④解:解这个分式方程;
    ⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
    ⑥答:写出答案。

    例题
    南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
    设普通车速度是x千米每小时则直达车是1.5x
    由题意得:
    828/x-828/1.5x=6 ,
    (828×1.5-828)/1.5x=6 ,
    414/1.5=6x,
    x=46, 1.5x=69
    答:普通车速度是46千米每小时,直达车是69千米每小时。

    无解的含义:
    1.解为增根。
    2.整式方程无解。(如:0x不等于0.)

  • 用分式解应用题的常见题型:
    (1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
    (2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
    (3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。



http://www.00-edu.com/ks/shuxue/2/86/2019-04-08/987295.html十二生肖
十二星座