题文
D.
答案
据专家权威分析,试题“小马虎在下面的计算中只作对了一道题,他做对的题目是[]A.B.C...”主要考查你对 分式的加减乘除混合运算及分式的化简,整式的除法,分式的乘除,分式的加减 等考点的理解。关于这些考点的“档案”如下:
分式的加减乘除混合运算及分式的化简整式的除法分式的乘除分式的加减
考点名称:分式的加减乘除混合运算及分式的化简
分式的混合运算:在解答分式的乘除法混合运算时,注意两点,就可以了:注意运算的顺序:按照从左到右的顺序依次计算;注意分式乘除法法则的灵活应用。
考点名称:整式的除法
整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。
整式的除法法则:1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。 数学符号表示: (a≠0,m、n为正整数,并且m>n) 2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。 3、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
整式的除法运算:单项式÷单项式单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。多项式÷单项式多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。说明:多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项。多项式÷单项式 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。
考点名称:分式的乘除
分式乘除的解题步骤:分式乘法:(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;如果有奇数个负号,积为负;(2)计算分子与分子的积;(3)计算分母与分母的积;(4)把积中的分子,分母进行约分,化成最简分式或整式。在解题时,这些步骤是连贯的。
分式除法要注意两个变化:一是运算符号的变化,由原来的除法运算变成乘法运算;二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。同学们也可以这样来理解这条法则:两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。基本步骤:(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;如果有奇数个负号,积为负;(2)计算被除式的分子与除式的分母的积,作为商的分子;(3)计算被除式的分母与除式的分子的积,,作为商的分母;(4)把商中的分子,分母进行约分,化成最简分式或整式。此法,有点十字相乘的思想。就像比例的计算,内项之积为分子,外项之积为分母。
考点名称:分式的加减