零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 分式的加减乘除混合运算及分式的化简 > 正文 返回 打印

(1)化简:(4a2-2a-aa-2)÷(1+2a);(2)计算:8+|23-32|÷6.-数学

[db:作者]  2019-04-10 00:00:00  零零社区

题文

(1)化简:(
4
a2-2a
-
a
a-2
)÷(1+
2
a
);
(2)计算:

8
+|2

3
-3

2

6
题型:解答题  难度:中档

答案

原式=[
4
a(a-2)
-
a2
a(a-2)
a
a+2

=
(2-a)(2+a)
a(a-2)
×
a
a+2

=-1;
原式=2

2
+(3

2
-2

3
)÷

6

=2

2
+

3
-

2

=

2
+

3

据专家权威分析,试题“(1)化简:(4a2-2a-aa-2)÷(1+2a);(2)计算:8+|23-32|÷6.-数学-魔方..”主要考查你对  分式的加减乘除混合运算及分式的化简,二次根式的定义,最简二次根式,实数的运算  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简二次根式的定义最简二次根式实数的运算

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

考点名称:二次根式的定义

  • 二次根式:
    我们把形如叫做二次根式。
    二次根式必须满足:
    含有二次根号“”;
    被开方数a必须是非负数。

    确定二次根式中被开方数的取值范围:
    要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

  • 二次根式性质:
    (1)a≥0 ; ≥0 (双重非负性 );

    (2)

    (3)
                                0(a=0);

    (4)

    (5)

  • 二次根式判定:
    ①二次根式必须有二次根号,如等;
    ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
    ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
    ④二次根式是一个非负数;
    ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

    二次根式的应用:
    主要体现在两个方面:
    (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
    (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

考点名称:最简二次根式

  • 最简二次根式定义:
    被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
    有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

  • 最简二次根式同时满足下列三个条件:
    (1)被开方数的因数是整数,因式是整式;
    (2)被开方数中不含有能开的尽的因式;
    (3)被开方数不含分母。

  • 最简二次根式判定:
    ①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
    ②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

    化二次根式为最简二次根式的方法和步骤:
    ①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
    ②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

考点名称:实数的运算

  • 实数的运算:
    实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
    实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

    四则运算封闭性:
    实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

  • 实数的运算法则:
    1、加法法则:
    (1)同号两数相加,取相同的符号,并把它们的绝对值相加;
    (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
    可使用
    ①加法交换律:两个数相加,交换加数的位置,和不变;即:a+b=b+a;
    ②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变;即:(a+b)+c=a+(b+c)。

    2、减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b)

    3、乘法法则:
    (1)两数相乘,同号取正,异号取负,并把绝对值相乘。
    (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
    (3)乘法可使用
    ①乘法交换律:两个数相乘,交换因数的位置,积不变,即:ab=ba;
    ②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即:(ab)c=a(bc);
    ③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即:a(b+c)=ab+ac。

    4、除法法则:
    (1)两数相除,同号得正,异号得负,并把绝对值相除。
    (2)除以一个数等于乘以这个数的倒数。
    (3)0除以任何数都等于0,0不能做被除数。

    5、乘方:所表示的意义是n个a相乘,即an,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数,乘方与开方互为逆运算。

    实数的运算顺序:
    乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。



http://www.00-edu.com/ks/shuxue/2/87/2019-04-10/990108.html十二生肖
十二星座