零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 分式的加减乘除混合运算及分式的化简 > 正文 返回 打印

化简:(3aa+1-aa-1)÷2aa2-1.-数学

[db:作者]  2019-04-10 00:00:00  零零社区

题文

化简:(
3a
a+1
-
a
a-1
2a
a2-1
题型:解答题  难度:中档

答案

原式=[
3a(a-1)
(a+1)(a-1)
-
a(a+1)
(a+1)(a-1)
]?
(a+1)(a-1)
2a

=
2a(a-2)
(a+1)(a-1)
?
(a+1)(a-1)
2a

=a-2.

据专家权威分析,试题“化简:(3aa+1-aa-1)÷2aa2-1.-数学-”主要考查你对  分式的加减乘除混合运算及分式的化简,最简公分母 ,最简分式 ,分式的基本性质 ,分式的乘除,分式的加减  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简最简公分母 最简分式 分式的基本性质 分式的乘除分式的加减

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

考点名称:最简公分母

  • 与异分母的分数通分类似,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

  • 最简公分母的确定方法:
    系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。
    注:
    (1)约分和通分的依据都是分式的基本性质
    (2)分式的约分和通分都是互逆运算过程。

考点名称:最简分式

  • 最简分式
    一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。

考点名称:分式的基本性质

  • 分式的基本性质:
    分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
    (C≠0),其中A、B、C均为整式。

  • 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

    约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
    分式的约分步骤:
    (1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
    (2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

    通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.

考点名称:分式的乘除

  • 分式的乘除法则:
    1、分式的乘法法则:
    分式乘分式,用分子的积作为积的分子,分母的积作为分母。
    用字母表示为:
    2、分式的除法法则:
    分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;除以一个分式,等于乘以这个分式的倒数。
    用式子表示为:(b,c,d均不为零)
    3、分式的乘方法则:分式乘方要把分子、分母分别乘方。
    用式子表示为:(n为正整数),其中b≠0,a,b可以代表数,也可以代表代数式。

  •  

  • 分式乘除的解题步骤:
    分式乘法:
    (1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
    如果有奇数个负号,积为负;
    (2)计算分子与分子的积;
    (3)计算分母与分母的积;
    (4)把积中的分子,分母进行约分,化成最简分式或整式。
    在解题时,这些步骤是连贯的。

    分式除法
    要注意两个变化:
    一是运算符号的变化,由原来的除法运算变成乘法运算;
    二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。
    同学们也可以这样来理解这条法则:
    两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。
    这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。

    基本步骤:
    (1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
    如果有奇数个负号,积为负;
    (2)计算被除式的分子与除式的分母的积,作为商的分子;
    (3)计算被除式的分母与除式的分子的积,,作为商的分母;
    (4)把商中的分子,分母进行约分,化成最简分式或整式。
    此法,有点十字相乘的思想。就像比例的计算,内项之积为分子,外项之积为分母。

考点名称:分式的加减

  • 分式的加减法则:
    同分母的分式相加减,分母不变,把分子相加减;
    异分母的分式相加减,先通分,变为同分母分式,然后再加减。
    用式子表示为:

  • 分式的加减要求:
    ①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
    ②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。



http://www.00-edu.com/ks/shuxue/2/87/2019-04-10/990235.html十二生肖
十二星座