题文
(11·孝感)如图,点A在双曲线上,点B在双曲线上,且AB∥ 轴,C、D在轴上,若四边形ABCD为矩形,则它的面积为___________. |
题型:填空题 难度:偏易
答案
根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
解:过A点作AE⊥y轴,垂足为E, ∵点A在双曲线y=上, ∴四边形AEOD的面积为1, ∵点B在双曲线y=上,且AB∥x轴, ∴四边形BEOC的面积为3, ∴四边形ABCD为矩形,则它的面积为3-1=2. 故答案为:2. 本题主要考查了反比例函数 y= 中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义. |
据专家权威分析,试题“(11·孝感)如图,点A在双曲线上,点B在双曲线上,且AB∥轴,C、D在..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|