已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=。(l)求该反-八年级数学 |
|
[db:作者] 2019-04-10 00:00:00 零零社区 |
|
题文
已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=。 (l)求该反比例函数和一次函数的解析式; (2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标. |
题型:解答题 难度:中档
答案
解:(1)过B点作BD⊥x轴,垂足为D, ∵B(n,﹣2),∴BD=2, 在Rt△OBD在,tan∠BOC=,即=,解得OD=5, 又∵B点在第三象限,∴B(﹣5,﹣2), 将B(﹣5,﹣2)代入y=中,得k=xy=10, ∴反比例函数解析式为y=, 将A(2,m)代入y=中,得m=5,∴A(2,5), 将A(2,5),B(﹣5,﹣2)代入y=ax+b中, 得,解得, 则一次函数解析式为y=x+3; (2)由y=x+3得C(﹣3,0),即OC=3, ∵S△BCE=S△BCO,∴CE=OC=3, ∴OE=6,即E(﹣6,0).
|
(1)过B点作BD⊥x轴,垂足为D,由B(n,-2)得BD=2,由tan∠BOC="2/5" ,解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式; (2)点E为x轴上的点,要使得△BCE与△BCO的面积相等,只需要CE=CO即可,根据直线AB解析式求CO,再确定E点坐标. |
据专家权威分析,试题“已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|
|
http://www.00-edu.com/ks/shuxue/2/88/2019-04-10/996721.html十二生肖十二星座
|