题文
已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为( ) |
题型:单选题 难度:偏易
答案
试题分析:先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1?y1=x2?y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可. 解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点 ∴x1?y1=x2?y2=3①, ∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点, ∴x1=﹣x2,y1=﹣y2②, ∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6. 故选A. 点评:本题考查的是反比例函数的对称性,根据反比例函数的图象关于原点对称得出x1=﹣x2,y1=﹣y2是解答此题的关键. |
据专家权威分析,试题“已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|