题文
点(﹣1,y1),(2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是( )A.y3<y2<y1 | B.y2<y3<y1 | C.y1<y2<y3 | D.y1<y3<y2 |
|
题型:单选题 难度:偏易
答案
试题分析:先根据反比例函数的解析式判断出此函数图象所在的象限,再根据各点的坐标判断出各点所在的象限,根据函数图象在各象限内点的坐标特点解答. ∵函数中k=6>0, ∴此函数的图象在一、三象限,且在每一象限内y随x的增大而减小, ∵﹣1<0, ∴点(﹣1,y1)在第三象限, ∴y1<0, ∵0<2<3, ∴(2,y2),(3,y3)在第一象限, ∴y2>y3>0, ∴y2>y3>y1. 故选D. 点评:本题考查的是反比例函数图象上点的坐标特点,根据题意判断出函数图象所在象限是解答此题的关键. |
据专家权威分析,试题“点(﹣1,y1),(2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|