题文
如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为( )
A.12 B.10 C.8 D.6 |
题型:单选题 难度:中档
答案
试题分析:先根据反比例函数的图象在第一象限判断出k的符号,再延长线段BA,交y轴于点E,由于AB∥x轴,所以AE⊥y轴,故四边形AEOD是矩形,由于点A在双曲线y=上,所以S矩形AEOD=4,同理可得S矩形OCBE=k,由S矩形ABCD=S矩形OCBE﹣S矩形AEOD即可得出k的值. 解:∵双曲线y=(k≠0)在第一象限, ∴k>0, 延长线段BA,交y轴于点E, ∵AB∥x轴, ∴AE⊥y轴, ∴四边形AEOD是矩形, ∵点A在双曲线y=上, ∴S矩形AEOD=4, 同理S矩形OCBE=k, ∵S矩形ABCD=S矩形OCBE﹣S矩形AEOD=k﹣4=8, ∴k=12. 故选A.
点评:本题考查的是反比例函数系数k的几何意义,即反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. |
据专家权威分析,试题“如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|