题文
如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数的图象与边BC交于点F.
(1)若△OAE、△OCF的面积分别为S1、S2.且S1+S2=2,求k的值; (2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少? |
题型:解答题 难度:中档
答案
(1)2 (2)当点E运动到AB的中点时,四边形OAEF的面积最大,最大值是5. |
试题分析:(1)设E(x1,),F(x2,),x1>0,x2>0,根据三角形的面积公式得到S1=S2=k,利用S1+S2=2即可求出k; (2)设,,利用S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=﹣+5,根据二次函数的最值问题即可得到当k=4时,四边形OAEF的面积有最大值,S四边形OAEF=5,此时AE=2. 解:(1)∵点E、F在函数y=(x>0)的图象上, ∴设E(x1,),F(x2,),x1>0,x2>0, ∴S1=,S2=, ∵S1+S2=2, ∴=2, ∴k=2; (2)∵四边形OABC为矩形,OA=2,OC=4, 设,, ∴BE=4﹣,BF=2﹣, ∴S△BEF=﹣k+4, ∵S△OCF=,S矩形OABC=2×4=8, ∴S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=+4, =﹣+5, ∴当k=4时,S四边形OAEF=5, ∴AE=2. 当点E运动到AB的中点时,四边形OAEF的面积最大,最大值是5. 点评:本题考查了反比例函数k的几何含义和点在双曲线上,点的横纵坐标满足反比例的解析式.也考查了二次的顶点式及其最值问题. |
据专家权威分析,试题“如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|