题文
已知:A(a,y1)、B(2a,y2)是反比例函数图像上的两点.
(1)比较y1与y2的大小关系; (2)若A、B两点在一次函数 第一象限的图像上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连结OA、OB,且S△OAB=8,求a的值; (3)在(2)的条件下,如果,,求使得m>n的x的取值范围. |
题型:解答题 难度:中档
答案
(1)y1<y2,(2)2 (3)x<0或2<x<4 |
试题分析:(1)∵A、B是反比例函数图像上的两点,∴a≠0 当a>0时,A、B在第一象限,由a<2a可知:y1<y2; 同理,当a<0时,y1<y2 4′(只写一种情况得2分)
(2)由条件可知:a>0,b>0,过点B作BE⊥AC,垂足为E, 直线AB分别交x轴、y轴于点F、G。 ∵A(a,y1)、B(2a,y2)在反比例函数的图像上, ∴。∴AE=BD,从而有△ABE≌△BFD ∴OC=CD=DF=a,从而得GA=AB=BF, 由S△OAB=8,得S△GOF=24,由OF·OG="24" 得,∴ b=8 a=2 (3)由(2)得一次函数的解析式为:,反比例函数的解析式为:,A、B两点的横坐标分别为2、4,且、,因此,使得m>n的x的取值范围就是求反比例函数的图像在一次函数图像下方的点中横坐标的取值范围,从图像可以看出:x<0或2<x<4 点评:本题考查一次函数,反比例函数,解答本题需要考生掌握一次函数,反比例函数的图象和性质,会利用一次函数,反比例函数的图象来比较函数值的大小 |
据专家权威分析,试题“已知:A(a,y1)、B(2a,y2)是反比例函数图像上的两点.(1)比较y1与..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|