题文
如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(k>0)在第一象限内的图象经过点A,与BC交于点F.
(1)若OA=10,求反比例函数解析式; (2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标; (3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由. |
题型:解答题 难度:中档
答案
(1)y=(x>0)(2)OA= C(5,)(3)P1(,),P2(﹣,),P3(,),P4(﹣,). |
(1)过点A作AH⊥OB于H, ∵sin∠AOB=,OA=10, ∴AH=8,OH=6, ∴A点坐标为(6,8),根据题意得: 8=,可得:k=48, ∴反比例函数解析式:y=(x>0); (2)设OA=a(a>0),过点F作FM⊥x轴于M, ∵sin∠AOB=, ∴AH=a,OH=a, ∴S△AOH=?aa=a2, ∵S△AOF=12, ∴S平行四边形AOBC=24, ∵F为BC的中点, ∴S△OBF=6, ∵BF=a,∠FBM=∠AOB, ∴FM=a,BM=a, ∴S△BMF=BM?FM=a?a=a2, ∴S△FOM=S△OBF+S△BMF=6+a2, ∵点A,F都在y=的图象上, ∴S△AOH=k, ∴a2=6+a2, ∴a=, ∴OA=, ∴AH=,OH=2, ∵S平行四边形AOBC=OB?AH=24, ∴OB=AC=3, ∴C(5,); (3)存在三种情况: 当∠APO=90°时,在OA的两侧各有一点P,分别为:P1(,),P2(﹣,), 当∠PAO=90°时,P3(,), 当∠POA=90°时,P4(﹣,).
|
据专家权威分析,试题“如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|