题文
如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点. (1)求反比例函数的解析式; (2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C; (3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).
|
题型:解答题 难度:中档
答案
(1)反比例函数的解析式为; (2)说明见解析; (3)a的范围为. |
试题分析:(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入即可得到m=2,从而可确定反比例函数的解析式; (2)把x=3代入y=kx+3-3k(k≠0)得到y=3,即可说明一次函数y=kx+3-3k(k≠0)的图象一定过点C; (3)设点P的横坐标为a,由于一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由得到,于是得到a的取值范围. (1)∵四边形ABCD是平行四边形, ∴AD=BC, ∵B(3,1),C(3,3), ∴BC⊥x轴,AD=BC=2, 而A点坐标为(1,0), ∴点D的坐标为(1,2). ∵反比例函数的函数图象经过点D(1,2), ∴, ∴m=2, ∴反比例函数的解析式为; (2)当x=3时,y=kx+3-3k=3k+3-3k=3, ∴一次函数y=kx+3-3k(k≠0)的图象一定过点C; (3)设点P的横坐标为a, 则a的范围为. |
据专家权威分析,试题“如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反..”主要考查你对 反比例函数的定义,反比例函数的图像,反比例函数的性质,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
反比例函数的定义反比例函数的图像反比例函数的性质求反比例函数的解析式及反比例函数的应用
考点名称:反比例函数的定义 考点名称:反比例函数的图像 考点名称:反比例函数的性质 考点名称:求反比例函数的解析式及反比例函数的应用
|