零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求反比例函数的解析式及反比例函数的应用 > 正文 返回 打印

如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-2,-5),C(5,n),交y轴于点B,交x轴于点D。(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连接OA,OC,求△AOC的-九年级数学

[db:作者]  2019-04-13 00:00:00  零零社区

题文

如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-2,-5),C(5,n),交y轴于点B,交x轴于点D。

(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA,OC,求△AOC的面积。
题型:解答题  难度:偏难

答案

解:(1)∵反比例函数的图象经过点A﹙-2,-5﹚,
∴m=(-2)×(-5)=10,
∴反比例函数的表达式为
∵点C﹙5,n﹚在反比例函数的图象上,
∴n==2,
∴C的坐标为﹙5,2﹚,
∵一次函数的图象经过点A,C,将这两个点的坐标代入y=kx+b,
,解得
∴所求一次函数的表达式为y=x-3;
(2)∵一次函数y=x-3的图像交y轴于点B,
∴B点坐标为﹙0,-3﹚,
∴OB=3,
∵A点的横坐标为-2,C点的横坐标为5,
∴S△AOC=S△AOB+S△BOC=

据专家权威分析,试题“如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-2,-5..”主要考查你对  求反比例函数的解析式及反比例函数的应用,求一次函数的解析式及一次函数的应用,三角形的周长和面积  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用求一次函数的解析式及一次函数的应用三角形的周长和面积

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

考点名称:三角形的周长和面积

  • 三角形的概念:
    由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

    构成三角形的元素:
    边:组成三角形的线段叫做三角形的边;
    顶点:相邻两边的公共端点叫做三角形的顶点;
    内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。

    三角形有下面三个特性:
    (1)三角形有三条线段;
    (2)三条线段不在同一直线上;
    (3)首尾顺次相接。

    三角形的表示:
    用符号“△,顶点是A、B、C的三角形记作“△ABC”,读作ABC”。

  • 三角形的分类:
    (1)三角形按边的关系分类如下:

    (2)三角形按角的关系分类如下:

    把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

  • 三角形的周长和面积:
    三角形的周长等于三角形三边之和。
    三角形面积=(底×高)÷2。



http://www.00-edu.com/ks/shuxue/2/91/2019-04-13/1008729.html十二生肖
十二星座