题文
答案
据专家权威分析,试题“如图,直线与双曲线(x>0)交于点A,将直线向下平移个6单位后,..”主要考查你对 求反比例函数的解析式及反比例函数的应用,一次函数的图像,平移 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用一次函数的图像平移
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。
反比例函数的应用:建立函数模型,解决实际问题。
考点名称:一次函数的图像
性质:(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。k,b决定函数图像的位置:y=kx时,y与x成正比例:当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。y=kx+b时:当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;当 k>0,b<0,这时此函数的图象经过第一、三、四象限;当 k<0,b>0,这时此函数的图象经过第一、二、四象限;当 k<0,b<0,这时此函数的图象经过第二、三、四象限。当b>0时,直线必通过第一、二象限;当b<0时,直线必通过第三、四象限。特别地,当b=0时,直线经过原点O(0,0)。这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的
考点名称:平移
平移基本性质:经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等(3)多次连续平移相当于一次平移。(4)偶数次对称后的图形等于平移后的图形。(5)平移是由方向和距离决定的。这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移的三个要点1 原来的图形的形状和大小和平移后的图形是全等的。2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)3 平移的距离。(长度,如7厘米,8毫米等)
平移作用:1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。