题文
答案
解:(1)∵反比例函数y=的图象经过点(1,1), ∴1=,解得k=2,∴反比例函数的解析式为y=;(2)解方程组得,∵点A在第三象限,且同时在两个函数图象上, ∴A(,-2);(3) P1(,-2),P2(,-2),P3(,2)。
据专家权威分析,试题“若一次函数y=2x-1和反比例函数y=的图象都经过点(1,1)。(1)求反比..”主要考查你对 求反比例函数的解析式及反比例函数的应用,一次函数的图像,反比例函数的图像,平行四边形的性质 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用一次函数的图像反比例函数的图像平行四边形的性质
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。
反比例函数的应用:建立函数模型,解决实际问题。
考点名称:一次函数的图像
性质:(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。k,b决定函数图像的位置:y=kx时,y与x成正比例:当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。y=kx+b时:当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;当 k>0,b<0,这时此函数的图象经过第一、三、四象限;当 k<0,b>0,这时此函数的图象经过第一、二、四象限;当 k<0,b<0,这时此函数的图象经过第二、三、四象限。当b>0时,直线必通过第一、二象限;当b<0时,直线必通过第三、四象限。特别地,当b=0时,直线经过原点O(0,0)。这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的
考点名称:反比例函数的图像
考点名称:平行四边形的性质
平行四边形的性质:主要性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的两组对边分别相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的两组对角分别相等”)(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行线段相等。(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。(简述为“平行四边形的对角线互相平分”)(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)(7)平行四边形的面积等于底和高的积。(可视为矩形)(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(13)平行四边形对角线把平行四边形面积分成四等分。(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。