零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求反比例函数的解析式及反比例函数的应用 > 正文 返回 打印

通过市场调查,一段时间内某地区特种农产品的需求量y(千克)与市场价格x(元/千克)存在下列函数关系式:y=100000x+6000(0<x<100);又已知该地区农民的这种农产品的生产数量z(千-数学

[db:作者]  2019-04-13 00:00:00  互联网

题文

通过市场调查,一段时间内某地区特种农产品的需求量y(千克)与市场价格x(元/千克)存在下列函数关系式:y=
100000
x
+6000(0<x<100);又已知该地区农民的这种农产品的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<100),现不计其它因素影响,如果需求数量y等于生产数量z时,即供需平衡,此时市场处于平衡状态.
(1)根据以上市场调查,请你分析当市场处于平衡状态时,该地区这种农产品的市场价格与这段时间内农民的总销售收入各是多少?
(2)受国家“三农”政策支持,该地区农民运用高科技改造传统生产方式,减少产量,以大力提高产品质量.此时生产数量z与市场价格x的函数关系发生改变,而需求函数关系未发生变化,当市场再次处于平衡状态时,市场价格已上涨了a(0<a<25)元,问在此后的相同时间段内该地区农民的总销售收入是增加了还是减少了,变化多少?
题型:解答题  难度:中档

答案

(1)由已知市场处于平衡,此时y=z,得
100000
x
+6000=400x,
(x-25)(x+10)=0,
∴x1=25,x2=-10(舍去),
把x=25代入z=400x中,得
z=10000(千克),
一段时间内该地区农民的总销售收入=25×10000=250000(元).

(2)∵需求函数关系未变,
∴平衡点仍在需求函数图象上.
由已知此时价格为(a+25)元/千克,代入y=
100000
x
+6000中,得
此时的需求数量y1=
100000
a+25
+6000(千克),
又∵此时市场处于平衡,生产数量z1=需求数量y1
∴此时的总销售收入为(a+25)?(
100000
a+25
+6000)=250000+6000a(0<a<25),
∴农民总销售收入增加了(250000+6000a)-250000=6000a(元).

据专家权威分析,试题“通过市场调查,一段时间内某地区特种农产品的需求量y(千克)与市场..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。



http://www.00-edu.com/ks/shuxue/2/91/2019-04-13/1011101.html十二生肖
十二星座