零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求反比例函数的解析式及反比例函数的应用 > 正文 返回 打印

如图1,已知双曲线y=kx(k>0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2),则点B的坐标为______;若点A的横坐标为m,则点B的坐标可表示为-数学

[db:作者]  2019-04-13 00:00:00  互联网

题文

如图1,已知双曲线y=
k
x
(k>0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为______;若点A的横坐标为m,则点B的坐标可表示为______;
(2)如图2,过原点O作另一条直线l,交双曲线y=
k
x
(k>0)于P,Q两点,点P在第一象限.
①说明四边形APBQ一定是平行四边形;
②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
题型:解答题  难度:中档

答案

(1)∵双曲线和直线y=k'x都是关于原点的中心对称图形,它们交于A,B两点,
∴B的坐标为(-4,-2),
(-m,-k'm)或(-m,-
k
m
);

(2)①由勾股定理OA=

m2+(k′m)2

OB=

(-m)2+(-k′m)2
=

m2+(k′m)2

∴OA=OB.
同理可得OP=OQ,
所以四边形APBQ一定是平行四边形;
②四边形APBQ可能是矩形,
此时m,n应满足的条件是mn=k;
四边形APBQ不可能是正方形(1分)
理由:点A,P不可能达到坐标轴,即∠POA≠90°.

据专家权威分析,试题“如图1,已知双曲线y=kx(k>0)与直线y=k′x交于A,B两点,点A在第一..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。



http://www.00-edu.com/ks/shuxue/2/91/2019-04-13/1011989.html十二生肖
十二星座