零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求反比例函数的解析式及反比例函数的应用 > 正文 返回 打印

某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:年度2006200720082009投入技改资金x(万元)2.5344.5产品成本y(万元/件)7.-数学

[db:作者]  2019-04-13 00:00:00  零零社区

题文

某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:
年度2006200720082009
投入技改资金x(万元)2.5344.5
产品成本y(万元/件)7.264.54
(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)按照这种变化规律,若2010年已投入技改资金5万元.
①预计生产成本每件比2009年降低多少万元?
②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)
题型:解答题  难度:中档

答案

(1)设其为一次函数,解析式为y=kx+b,
当x=2.5时,y=7.2;当x=3时,y=6,

7.2=2.5k+b
6=3k+b

解得k=-2.4,b=13.2
∴一次函数解析式为y=-2.4x+13.2
把x=4时,y=4.5代入此函数解析式,
左边≠右边.
∴其不是一次函数.
同理.其也不是二次函数.
设其为反比例函数.解析式为y=
k
x

当x=2.5时,y=7.2,可得:7.2=
k
2.5
解得k=18
∴反比例函数是y=
18
x
.(2分)
验证:当x=3时,y=
18
3
=6,符合反比例函数.
同理可验证x=4时,y=4.5,x=4.5时,y=4成立.
可用反比例函数y=
18
x
表示其变化规律.

(2)①当x=5万元时,y=3.6.
4-3.6=0.4(万元),
∴生产成本每件比2009年降低0.4万元.
②当y=3.2万元时,3.2=
18
x

∴x=5.625
∴5.625-5=0.625≈0.63(万元)
∴还约需投入0.63万元.

据专家权威分析,试题“某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。



http://www.00-edu.com/ks/shuxue/2/91/2019-04-13/1011993.html十二生肖
十二星座