零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求反比例函数的解析式及反比例函数的应用 > 正文 返回 打印

如图,已知直线y1=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数y2=kx(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并说明反比例函数的增减性;(3)直接-数学

[db:作者]  2019-04-13 00:00:00  互联网

题文

如图,已知直线y1=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数y2=
k
x
(k≠0)的图象上.
(1)求点P′的坐标;
(2)求反比例函数的解析式,并说明反比例函数的增减性;
(3)直接写出当y2<2时自变量x的取值范围.
题型:解答题  难度:中档

答案

(1)∵直线y1=-2x经过点P(-2,a),
∴a=-2×(-2)=4,
∴点P(-2,4),
∴点P关于y轴的对称点P′,
∴P'(2,4);

(2)∵P'(2,4)在反比例函数y2=
k
x
(k≠0)的图象上,
∴k=2×4=8,
∴反比例函数关系式为:y=
8
x

在每个象限内,y随着x的增大而减小;

(3)x<0或x>4.

据专家权威分析,试题“如图,已知直线y1=-2x经过点P(-2,a),点P关于y轴的对称点P′在反..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。



http://www.00-edu.com/ks/shuxue/2/91/2019-04-13/1012101.html十二生肖
十二星座