零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求反比例函数的解析式及反比例函数的应用 > 正文 返回 打印

如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线y=mx的一个交点,过点C作CD⊥y轴,垂足为D,且△BCD的面积为1.(1)求双曲线的解析式;(2)若在y轴上有一点E-数学

[db:作者]  2019-04-13 00:00:00  互联网

题文

如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线y=
m
x
的一个交点,过点C作CD⊥y轴,垂足为D,且△BCD的面积为1.
(1)求双曲线的解析式;
(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与△BCD相似,求点E的坐标.
题型:解答题  难度:中档

答案

(1)∵CD=1,△BCD的面积为1,
∴BD=2
∵直线y=kx+2与x轴、y轴分别交于点A、B,
∴当x=0时,y=2,
∴点B坐标为(0,2).
∴点D坐标为(O,4),
∴a=4.
∴C(1,4)
∴所求的双曲线解析式为y=
4
x


(2)因为直线y=kx+2过C点,
所以有4=k+2,k=2,
直线解析式为y=2x+2.
∴点A坐标为(-1,0),B(0,2),
∴AB=

5
,BC=

5

当△BAE∽△BCD时,此时点E与点O重合,点E坐标为(O,0);
当△BEA∽△BCD时,
AB
DB
=
BE
BC

5
2
=
BE

5

∴BE=
5
2

∴OE=
1
2

此时点E坐标为(0,-
1
2
).
综上:当E为(0.0)或(0.-
1
2
)时△EAB与△BCD相似.

据专家权威分析,试题“如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。



http://www.00-edu.com/ks/shuxue/2/91/2019-04-13/1012233.html十二生肖
十二星座