零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求反比例函数的解析式及反比例函数的应用 > 正文 返回 打印

如图,直线y=-15x+1与x轴交于B,与y轴交于A,点C在双曲线y=kx上一点,且△ABC是以AB为底的等腰直角三角形,CD⊥AB于D,M、N分别是AC、BC上的一动点,且∠MDN=90°.下列结论:①k=--数学

[db:作者]  2019-04-13 00:00:00  零零社区

题文

如图,直线y=-
1
5
x+1与x轴交于B,与y轴交于A,点C在双曲线y=
k
x
上一点,且△ABC是以AB为底的等腰直角三角形,CD⊥AB于D,M、N分别是AC、BC上的一动点,且∠MDN=90°.下列结论:
①k=-4;②AM=CN;③AM2+BN2=MN2;④MN平分∠CND.
其中正确的是(  )
A.①②③B.①②④C.②③④D.①③④

题型:单选题  难度:中档

答案

在y=-
1
5
x+1中,令x=0,解得:y=1,则A的坐标是(0,1);
令y=0,解得:x=5,则B的坐标是(5,0),
则D的坐标是:(
5
2
1
2
),
设直线CD的解析式是y=5x+b,代入(
5
2
1
2
)得:
25
2
+b=
1
2
,解得:b=-12,
则函数的解析式是:y=5x-12,
设C的横坐标是m,则纵坐标是5m-12,
则AC的斜率是:
5m-13
m
,BC的斜率是:
5m-12
m-5

5m-13
m
?
5m-12
m-5
=-1,
解得:m=3或2.
则C的坐标是:(3,3)(舍去)或(2,-2).
把(2,-2)代入y=
k
x
得:k=-4.
故①正确;
作DE⊥AC于点E,作DF⊥BC于点F.
则DE⊥DF,且DE=DF,
∴∠DEF=∠MDN,
∴∠EDM=∠FDN,
在△DEM和△DFN中,

∠EDM=∠FDN
DE=DF
∠DEM=∠DFN

∴△DEM≌△DFN.
∴DM=DM,EM=NF,
又∵等腰直角△ABD中,CD是中线,
∴AE=CE=CF=BF,
∴AM=CN,故②正确;
∵在直角△CMN中,CM2+CN2=MN2
设AE=CE=CF=BF=x,EM=FN=y,
则MN2=CM2+CN2=(x-y)2+(x+y)2=2(x2+y2),
AM2+BN2=(x+y)2+(x-y)2=2(x2+y2),
则AM2+BN2=MN2③正确;
当N在B点时,M正好在C点,不会出现MN平分∠CND的情况,故④一定是错误的;
故选A.

据专家权威分析,试题“如图,直线y=-15x+1与x轴交于B,与y轴交于A,点C在双曲线y=kx上一..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。



http://www.00-edu.com/ks/shuxue/2/91/2019-04-13/1012367.html十二生肖
十二星座