零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求反比例函数的解析式及反比例函数的应用 > 正文 返回 打印

如图,已知动点P在函数y=12x(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF?BE的值为()A.4B.2C.1D.12-数学

[db:作者]  2019-04-13 00:00:00  零零社区

题文

如图,已知动点P在函数y=
1
2x
(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF?BE的值为(  )
A.4B.2C.1D.
1
2

题型:单选题  难度:中档

答案

作FG⊥x轴,
∵P的坐标为(a,
1
2a
),且PN⊥OB,PM⊥OA,
∴N的坐标为(0,
1
2a
),M点的坐标为(a,0),
∴BN=1-
1
2a

在直角三角形BNF中,∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形),
∴NF=BN=1-
1
2a

∴F点的坐标为(1-
1
2a
1
2a
),
同理可得出E点的坐标为(a,1-a),
∴AF2=(1-1+
1
2a
2+(
1
2a
2=
1
2a2
,BE2=(a)2+(-a)2=2a2
∴AF2?BE2=
1
2a2
?2a2=1,即AF?BE=1.
故选C.

据专家权威分析,试题“如图,已知动点P在函数y=12x(x>0)的图象上运动,PM⊥x轴于点M,PN..”主要考查你对  求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

求反比例函数的解析式及反比例函数的应用

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。



http://www.00-edu.com/ks/shuxue/2/91/2019-04-13/1012380.html十二生肖
十二星座