题文
答案
据专家权威分析,试题“如图是某旅游景区上山的甲、乙两段台阶的示意图,图中的数字表示..”主要考查你对 平均数,方差,解直角三角形 等考点的理解。关于这些考点的“档案”如下:
平均数方差解直角三角形
考点名称:平均数
平均数、中位数和众数关系:联系: 平均数、中位数和众数都是来刻画数据平均水平的统计量,它们各有特点。对于平均数大家比较熟悉,中位数刻画了一组数据的中等水平,众数刻画了一组数据中出现次数最多的情况。 平均数非常明显的优点之一是,它能够利用所有数据的特征,而且比较好算。另外,在数学上,平均数是使误差平方和达到最小的统计量,也就是说利用平均数代表数据,可以使二次损失最小。因此,平均数在数学中是一个常用的统计量。但是平均数也有不足之处,正是因为它利用了所有数据的信息,平均数容易受极端数据的影响。 例如,在一个单位里,如果经理和副经理工资特别高,就会使得这个单位所有成员工资的平均水平也表现得很高,但事实上,除去经理和副经理之外,剩余所有人的平均工资并不是很高。这时,中位数和众数可能是刻画这个单位所有人员工资平均水平更合理的统计量。 中位数和众数这两个统计量的特点都是能够避免极端数据,但缺点是没有完全利用数据所反映出来的信息。 由于各个统计量有各自的特征,所以需要我们根据实际问题来选择合适的统计量。 当然,出现极端数据不一定用中位数,一般,统计上有一个方法,就要认为这个数据不是来源于这个总体的,因而把这个数据去掉。比如大家熟悉的跳水比赛评分,为什么要去掉一个最高分、一个最低分呢,就认为这两个分不是来源于这个总体,不能代表裁判的鉴赏力。于是去掉以后再求剩下数据的平均数。需要指出的是,我们处理的数据,大部分是对称的数据,数据符合或者近似符合正态分布。这时候,均值(平均数)、中位数和众数是一样的。
区别: 只有在数据分布偏态(不对称)的情况下,才会出现均值、中位数和众数的区别。所以说,如果是正态的话,用哪个统计量都行。如果偏态的情况特别严重的话,可以用中位数。 除了需要刻画平均水平的统计量,统计中还有刻画数据波动情况的统计量。比如,平均数同样是5,它所代表的数据可能是1、3、5、7、9,可能是4、4.5、5、5.5、6。也就是说5所代表的不同组数据的波动情况是不一样的。怎样刻画数据的波动情况呢?很自然的想法就是用最大值减最小值,即求一组数据的极差。数学中还有方差、标准差等许多用来刻画数据特征的统计量。当然这些都是教师感兴趣、值得了解的内容,不是小学数学的教学要求。
考点名称:方差
公式:方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。 在实际计算中,我们用以下公式计算方差。方差是各个数据与平均数之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,^,xn表示个体,而s^2就表示方差。而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S².在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。方差分析主要用途:①均数差别的显著性检验;②分离各有关因素并估计其对总变异的作用;③分析因素间的交互作用;④方差齐性检验。
考点名称:解直角三角形
解直角三角形的函数值:
锐角三角函数:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a(1)互余角的三角函数值之间的关系:若∠ A+∠ B=90°,那么sinA=cosB或sinB=cosA(2)同角的三角函数值之间的关系:①sin2A+cos2A=1②tanA=sinA/cosA③tanA=1/tanB④a/sinA=b/sinB=c/sinC(3)锐角三角函数随角度的变化规律:锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。
解直角三角形的函数值列举:sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383 sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346 sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087 sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931 sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074 sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474 sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027 sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015 sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675 sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994 sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027 sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731 sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375 sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582 sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475 sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941 sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708 sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474 sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239 sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386 sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678 sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009 sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017 sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535 sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683 sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057 sin79=0.981627183447664 sin80=0.984807753012208 sin81=0.9876883405951378 sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733 sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738 sin88=0.9993908270190958 sin89=0.9998476951563913 sin90=1
cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738 cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733 cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378 cos10=0.984807753012208 cos11=0.981627183447664 cos12=0.9781476007338057 cos13=0.9743700647852352 cos14=0.9702957262759965 cos15=0.9659258262890683 cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535 cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017 cos22=0.9271838545667874 cos23=0.9205048534524404 cos24=0.9135454576426009 cos25=0.9063077870366499 cos26=0.898794046299167 cos27=0.8910065241883679 cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387 cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424 cos34=0.8290375725550417 cos35=0.8191520442889918 cos36=0.8090169943749474 cos37=0.7986355100472928 cos38=0.7880107536067219 cos39=0.7771459614569709 cos40=0.766044443118978 cos41=0.754709580222772 cos42=0.7431448254773942 cos43=0.7313537016191705 cos44=0.7193398003386512 cos45=0.7071067811865476 cos46=0.6946583704589974 cos47=0.6819983600624985 cos48=0.6691306063588582 cos49=0.6560590289905074 cos50=0.6427876096865394 cos51=0.6293203910498375 cos52=0.6156614753256583 cos53=0.6018150231520484 cos54=0.5877852522924731 cos55=0.5735764363510462 cos56=0.5591929034707468 cos57=0.5446390350150272 cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001 cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468 cos64=0.43837114678907746 cos65=0.42261826174069944 cos66=0.4067366430758004 cos67=0.3907311284892737 cos68=0.3746065934159122 cos69=0.35836794954530015 cos70=0.3420201433256688 cos71=0.32556815445715675 cos72=0.30901699437494745 cos73=0.29237170472273677 cos74=0.27563735581699916 cos75=0.25881904510252074 cos76=0.24192189559966767 cos77=0.22495105434386514 cos78=0.20791169081775923 cos79=0.19080899537654491 cos80=0.17364817766693041 cos81=0.15643446504023092 cos82=0.13917310096006546 cos83=0.12186934340514749 cos84=0.10452846326765346 cos85=0.08715574274765836 cos86=0.06975647374412523 cos87=0.052335956242943966 cos88=0.03489949670250108 cos89=0.0174524064372836 cos90=0
tan1=0.017455064928217585 tan2=0.03492076949174773 tan3=0.052407779283041196 tan4=0.06992681194351041 tan5=0.08748866352592401 tan6=0.10510423526567646 tan7=0.1227845609029046 tan8=0.14054083470239145 tan9=0.15838444032453627 tan10=0.17632698070846497 tan11=0.19438030913771848 tan12=0.2125565616700221 tan13=0.2308681911255631 tan14=0.24932800284318068 tan15=0.2679491924311227 tan16=0.2867453857588079 tan17=0.30573068145866033 tan18=0.3249196962329063 tan19=0.34432761328966527 tan20=0.36397023426620234 tan21=0.3838640350354158 tan22=0.4040262258351568 tan23=0.4244748162096047 tan24=0.4452286853085361 tan25=0.4663076581549986 tan26=0.4877325885658614 tan27=0.5095254494944288 tan28=0.5317094316614788 tan29=0.554309051452769 tan30=0.5773502691896257 tan31=0.6008606190275604 tan32=0.6248693519093275 tan33=0.6494075931975104 tan34=0.6745085168424265 tan35=0.7002075382097097 tan36=0.7265425280053609 tan37=0.7535540501027942 tan38=0.7812856265067174 tan39=0.8097840331950072 tan40=0.8390996311772799 tan41=0.8692867378162267 tan42=0.9004040442978399 tan43=0.9325150861376618 tan44=0.9656887748070739 tan45=0.9999999999999999 tan46=1.0355303137905693 tan47=1.0723687100246826 tan48=1.1106125148291927 tan49=1.1503684072210092 tan50=1.19175359259421 tan51=1.234897156535051 tan52=1.2799416321930785 tan53=1.3270448216204098 tan54=1.3763819204711733 tan55=1.4281480067421144 tan56=1.4825609685127403 tan57=1.5398649638145827 tan58=1.6003345290410506 tan59=1.6642794823505173 tan60=1.7320508075688767 tan61=1.8040477552714235 tan62=1.8807264653463318 tan63=1.9626105055051503 tan64=2.050303841579296 tan65=2.1445069205095586 tan66=2.246036773904215 tan67=2.355852365823753 tan68=2.4750868534162946 tan69=2.6050890646938023 tan70=2.7474774194546216 tan71=2.904210877675822 tan72=3.0776835371752526 tan73=3.2708526184841404 tan74=3.4874144438409087 tan75=3.7320508075688776 tan76=4.0107809335358455 tan77=4.331475874284153 tan78=4.704630109478456 tan79=5.144554015970307 tan80=5.671281819617707 tan81=6.313751514675041 tan82=7.115369722384207 tan83=8.144346427974593 tan84=9.514364454222587 tan85=11.43005230276132 tan86=14.300666256711942 tan87=19.08113668772816 tan88=28.636253282915515 tan89=57.289961630759144 tan90=(无限)