零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 中位数和众数 > 正文 返回 打印

下列说法中,正确的说法有()①对角线互相平分且相等的四边形是菱形;②等腰三角形中有两边长分别为3和2,则周长为8;③依次连接任意一个四边形各边中点所得的四边形是平行四边形-数学

[db:作者]  2019-04-13 00:00:00  零零社区

题文

下列说法中,正确的说法有(  )
①对角线互相平分且相等的四边形是菱形;
②等腰三角形中有两边长分别为3和2,则周长为8;
③依次连接任意一个四边形各边中点所得的四边形是平行四边形;
④点P(3,-5)关于x轴的对称点是P′(3,5);
⑤在数据1,3,3,0,2中,众数是3,中位数是3.
A.1个B.2个C.3个D.4个
题型:单选题  难度:偏易

答案

①错误,应该是:对角线互相垂直平分的四边形是菱形;
②错误,应该是:等腰三角形中有两边长分别为3和2,则周长为8或7(边长有两种情况3,3,2或3,2,2);
③正确,依次连接任意一个四边形各边中点所得的四边形是平行四边形;
④正确,点P(3,-5)关于x轴的对称点是P’(3,5);
⑤错误,应该是:在数据1,3,3,0,2中,众数是3,中位数是2.
故选B.

据专家权威分析,试题“下列说法中,正确的说法有()①对角线互相平分且相等的四边形是菱形..”主要考查你对  中位数和众数,等腰三角形的性质,等腰三角形的判定,三角形中位线定理,用坐标表示轴对称,平行四边形的判定  等考点的理解。关于这些考点的“档案”如下:

中位数和众数等腰三角形的性质,等腰三角形的判定三角形中位线定理用坐标表示轴对称平行四边形的判定

考点名称:中位数和众数

  • 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间位置的两个数据的平均数)叫这组数据的中位数。
    众数:在一组数据中,出现次数最多的数据。

  • 中位数的位置:
    当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值

    众数性质:
    用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
    当数值或被观察者没有明显次序(常发生于非数值性资料)时特别有用,由于可能无法良好定义算术平均数和中位数。例子:{鸡、鸭、鱼、鱼、鸡、鱼}的众数是鱼。
    众数算出来是销售最常用的,代表最多的 
    众数是在一组数据中,出现次数最多的数据 
    两组数据中,都是1,2出现次数最多 
    所以1,2是众数 
    众数:
    一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。
    例如:1,2,3,3,4的众数是3。 
    但是,如果有两个或两个以上个数出现次数都是最多的,那么这几个数都是这组数据的众数。
    例如:1,2,2,3,3,4的众数是2和3。
    还有,如果所有数据出现的次数都一样,那么这组数据没有众数。
    例如:1,2,3,4,5没有众数。
    在高斯分布中,众数位于峰值。

    平均数、中位数和众数的特征:

    (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
    (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
    (3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。 中位数算出来可避免极端数据,代表着数据总体的中等情况。
    (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  • 平均数、中位数和众数异同:
    一、相同点
    平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。

    二、不同点
    它们之间的区别,主要表现在以下方面。
    1、定义不同
    平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
    中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
    众数:在一组数据中出现次数最多的数叫做这组数据的众数。

    2、求法不同
    平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
    中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。
    众数:一组数据中出现次数最多的那个数,不必计算就可求出。

    3、个数不同
    在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。

    4、呈现不同
    平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
    中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
    众  数:是一组数据中的原数据 ,它是真实存在的。

    5、代表不同
    平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
    中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
    众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
    这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。

    6、特点不同
    平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
    中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
    众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。

    7、作用不同
    平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
    中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
    众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

  • 中位数、众数的求法:
    中位数:
    ①将数据按大小顺序排列;
    ②当数据个数为奇数时,中间的那个数据就是中位数;
    当数据个数为偶数时,居于中间的两个数据的平均数才是中位数。

    众数:找出频数最多的数据,若几个数据频数最多且相同,此时众数就是这几个数据。

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:三角形中位线定理

  • 三角形中位线定义:
    连接三角形两边中点的线段叫做三角形的中位线。一个三角形共有三条中位线。
    三角形中位线定理:
    三角形的中位线平行于第三边,并且等于它的一半。

    如图已知△ABC中,D,E分别是AB,AC两边中点。
    则DE平行于BC且等于BC/2

  • 三角形中位线逆定理:

    逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
    如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。
    逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
    如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

  • 区分三角形的中位线和中线:
    三角形的中位线是连结三角形两边中点的线段;
    三角形的中线是连结一个顶点和它的对边中点的线段。

考点名称:用坐标表示轴对称

  • 用坐标表示轴对称:
    关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;
    关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变。

    点(x, y)关于x轴对称的点的坐标为x,-y ,
    点(x, y)关于y轴对称的点的坐标为-x,y

    例如图中:
    点A(2,3)关于x轴对称的点的坐标为A,,(-2,3);
    点A(2,3)关于x轴对称的点的坐标为A,(2,3)。

  • 点拨:
    ①写出平面坐标系中一个点关于x轴和y轴对称的点的坐标:
    关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等。
    ②画出一个图形关于x轴或y轴对称:
    先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。

考点名称:平行四边形的判定

  • 平行四边形的判定:
    (1)定义:两组对边分别平行的四边形是平行四边形;
    (2)定理1:两组对角分别相等的四边形是平行四边形;
    (3)定理2:两组对边分别相等的四边形是平行四边形;
    (4)定理3:对角线互相平分的四边形是平行四边形
    (5)定理4:一组对边平行且相等的四边形是平行四边形。
    平行四边形的面积:S=底×高。



http://www.00-edu.com/ks/shuxue/2/93/2019-04-13/1023644.html十二生肖
十二星座