题文
答案
据专家权威分析,试题“若有意义,则=(),-=()。-九年级数学-”主要考查你对 二次根式的定义,二次根式的加减乘除混合运算,二次根式的化简 等考点的理解。关于这些考点的“档案”如下:
二次根式的定义二次根式的加减乘除混合运算,二次根式的化简
考点名称:二次根式的定义
二次根式判定:①二次根式必须有二次根号,如,等;②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;③二次根式定义中a≥0 是定义组成的一部分,不能省略;④二次根式是一个非负数;⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。二次根式的应用:主要体现在两个方面:(1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。
考点名称:二次根式的加减乘除混合运算,二次根式的化简
二次根式混合运算掌握:1、确定运算顺序。2、灵活运用运算定律。3、正确使用乘法公式。4、大多数分母有理化要及时。5、在有些简便运算中也许可以约分,不要盲目有理化。6、字母运算时注意隐含条件和末尾括号的注明。7、提公因式时可以考虑提带根号的公因式。
二次根式化简方法:二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。分母有理化:分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:(1)直接利用二次根式的运算法则:例:(2)利用平方差公式:例:(3)利用因式分解:例:(此题可运用待定系数法便于分子的分解)换元法(整体代入法):换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。例:在根式中,令,即可得到原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8
提公因式法:例:计算巧构常值代入法:例:已知x2-3x+1=0,求的值。分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。解:显然x≠0,x2-3x+1=0化为x+=3。 原式==2.