零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 二次根式的定义 > 正文 返回 打印

下列计算正确的是()A.8-2=2B.27-123=9-4=1C.(2-5)(2+5)=1D.6-22=32-数学

[db:作者]  2019-04-14 00:00:00  零零社区

题文

下列计算正确的是(  )
A.

8
-

2
=

2
B.

27
-

12
3
=

9
-

4
=1
C.(2-

5
)(2+

5
)=1
D.
6-

2

2
=3

2
题型:单选题  难度:偏易

答案

A、原式=2

2
-

2
=

2
,故正确;
B、原式=
3

3
-2

3
3
=

3
3
,故错误;
C、原式=4-5=-1,故错误;
D、原式=
(6-

2

2
2
=3

2
-1,故错误.
故选A.

据专家权威分析,试题“下列计算正确的是()A.8-2=2B.27-123=9-4=1C.(2-5)(2+5)=1D.6-22=..”主要考查你对  二次根式的定义,二次根式的乘除,二次根式的加减  等考点的理解。关于这些考点的“档案”如下:

二次根式的定义二次根式的乘除二次根式的加减

考点名称:二次根式的定义

  • 二次根式:
    我们把形如叫做二次根式。
    二次根式必须满足:
    含有二次根号“”;
    被开方数a必须是非负数。

    确定二次根式中被开方数的取值范围:
    要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

  • 二次根式性质:
    (1)a≥0 ; ≥0 (双重非负性 );

    (2)

    (3)
                                0(a=0);

    (4)

    (5)

  • 二次根式判定:
    ①二次根式必须有二次根号,如等;
    ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
    ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
    ④二次根式是一个非负数;
    ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

    二次根式的应用:
    主要体现在两个方面:
    (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
    (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

考点名称:二次根式的乘除

  • 二次根式的乘除法则:
    1、二次根式的乘法原则:,即两个二次根式相乘,根指数不变,相乘的结果是一个二次根式或有理式。
    2、二次根式的除法原则:,即二次根式相除,就是把被被开方数相除,根指数不变。
    有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。

考点名称:二次根式的加减

  • 二次根式加减法法则:
    先把式子中各项二次根式化成最简二次根式,然后再合并同类二次根式。
    1、同类二次根式
    一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
    2、合并同类二次根式
    把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
    3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
    例如:(1);2+3=5(2)+2=3
    4、注意:有括号时,要先去括号。

  • 二次根式的加减注意:
    ①二次根式合并同类项与合并同类项类似,因此二次根式的加减可以对比整式的加减进行;
    ②二次根式加减混合运算的是指就是合并同类项二次根式,不是同类二次根式不能合并。如+是最简结果,不能再合并;
    ③二次根式进行加减运算时,根号外的系数因式须保留假分数形式,如,不能写成5
    ④合并同类二次根式后若系数为多项式,须添加括号。



http://www.00-edu.com/ks/shuxue/2/96/2019-04-14/1035994.html十二生肖
十二星座