零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 二次根式的定义 > 正文 返回 打印

若a、b、c是△ABC的三边,化简:(a-b-c)2-|b-c-a|+(c-a-b)2.-数学

[db:作者]  2019-04-14 00:00:00  互联网

题文

若a、b、c是△ABC的三边,化简:

(a-b-c)2
-|b-c-a|+

(c-a-b)2
题型:解答题  难度:中档

答案

原式=|a-b-c|-|b-c-a|+|c-a-b|
=-(a-b-c)+(b-c-a)-(c-a-b)
=-a+b+c+b-c-a-c+a+b
=-a+3b-c.

据专家权威分析,试题“若a、b、c是△ABC的三边,化简:(a-b-c)2-|b-c-a|+(c-a-b)2.-数学-..”主要考查你对  二次根式的定义,三角形的三边关系  等考点的理解。关于这些考点的“档案”如下:

二次根式的定义三角形的三边关系

考点名称:二次根式的定义

  • 二次根式:
    我们把形如叫做二次根式。
    二次根式必须满足:
    含有二次根号“”;
    被开方数a必须是非负数。

    确定二次根式中被开方数的取值范围:
    要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

  • 二次根式性质:
    (1)a≥0 ; ≥0 (双重非负性 );

    (2)

    (3)
                                0(a=0);

    (4)

    (5)

  • 二次根式判定:
    ①二次根式必须有二次根号,如等;
    ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
    ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
    ④二次根式是一个非负数;
    ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

    二次根式的应用:
    主要体现在两个方面:
    (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
    (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

考点名称:三角形的三边关系

  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。



http://www.00-edu.com/ks/shuxue/2/96/2019-04-14/1036254.html十二生肖
十二星座