题文
答案
据专家权威分析,试题“计算:(-3)2-9-38-1+916+(-12)2.-数学-”主要考查你对 立方根,算术平方根,二次根式的加减乘除混合运算,二次根式的化简 等考点的理解。关于这些考点的“档案”如下:
立方根算术平方根二次根式的加减乘除混合运算,二次根式的化简
考点名称:立方根
开立方:求一个数a的立方根的运算叫做开立方,其中a叫做被开方数。立方根性质:①正数的立方根是正数;负数的立方根是负数;0的立方根是0。②一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(也叫做三次方根)。也就是说,如果x3=a,那么x叫做a的立方根。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。③立方和开立方运算,互为逆运算。④互为相反数的两个数的立方根也是互为相反数。⑤负数不能开平方,但能开立方。⑥任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。⑦当两个数相等时,这两个数的平方根相等,反之亦然。
笔算开立方的方法:方法一1.将被开立方数的整数部分从个位起向左每三位分为一组;2.根据最左边一组,求得立方根的最高位数;3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;5.用同样方法继续进行下去。方法二第1、2步同上。第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0;第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。然后重复第3、4步,直到除尽。
考点名称:算术平方根
考点名称:二次根式的加减乘除混合运算,二次根式的化简
二次根式混合运算掌握:1、确定运算顺序。2、灵活运用运算定律。3、正确使用乘法公式。4、大多数分母有理化要及时。5、在有些简便运算中也许可以约分,不要盲目有理化。6、字母运算时注意隐含条件和末尾括号的注明。7、提公因式时可以考虑提带根号的公因式。
二次根式化简方法:二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。分母有理化:分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:(1)直接利用二次根式的运算法则:例:(2)利用平方差公式:例:(3)利用因式分解:例:(此题可运用待定系数法便于分子的分解)换元法(整体代入法):换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。例:在根式中,令,即可得到原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8
提公因式法:例:计算巧构常值代入法:例:已知x2-3x+1=0,求的值。分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。解:显然x≠0,x2-3x+1=0化为x+=3。 原式==2.