零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 算术平方根 > 正文 返回 打印

解答题(1)已知a、b、c均为实数,且a-2+|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.(2)若x=2+1,y=2-1,求x2y-xy2(x-y)2的值.-数学

[db:作者]  2019-04-21 00:00:00  互联网

题文

解答题
(1)已知a、b、c均为实数,且

a-2
+|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.
(2)若x=

2
+1,y=

2
-1,求
x2y-xy2
(x-y)2
的值.
题型:解答题  难度:中档

答案

(1)∵

a-2
+|b+1|+(c+3)2=0,
∴a=2,b=-1,c=-3,
∴方程为2x2-x-3=0,
分解因式,得(2x-3)(x+1)=0,
解得x1=
3
2
,x2=-1;

(2)
x2y-xy2
(x-y)2
=
xy(x-y)
(x-y)2
=
xy
x-y

当x=

2
+1,y=

2
-1时,原式=
(

2
+1)(

2
-1)
(

2
+1)-(

2
-1)
=
1
2

据专家权威分析,试题“解答题(1)已知a、b、c均为实数,且a-2+|b+1|+(c+3)2=0,求方程ax..”主要考查你对  算术平方根,最简二次根式  等考点的理解。关于这些考点的“档案”如下:

算术平方根最简二次根式

考点名称:算术平方根

  • 概念:
    若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
    规定:0的算术平方根是0。
    表示:a的算术平方根记为,读作“根号a”。
    注:只有非负数有算术平方根,而且只有一个算术平方根。

  • 平方根和算术平方根的区别与联系:
    区别:
    (1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
    (2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
    (3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为
    (4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
    联系:
    (1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
    (2)存在条件相同:只有非负数才有平方根和算术平方根。
    (3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
    注:
    (1)平方和开平方的关系是互为逆运算;
    (2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
    (3)开方的方式是根号形式。

  •  

  • 电脑根号的打法:
    比较通用:
    左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
    运用Word的域命令在Word中根号:
    首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
    1.平方根
    一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
    2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
    算术平方根是定义在平方根基础上,因此负数没有算术平方根。
    3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。

考点名称:最简二次根式

  • 最简二次根式定义:
    被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
    有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

  • 最简二次根式同时满足下列三个条件:
    (1)被开方数的因数是整数,因式是整式;
    (2)被开方数中不含有能开的尽的因式;
    (3)被开方数不含分母。

  • 最简二次根式判定:
    ①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
    ②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

    化二次根式为最简二次根式的方法和步骤:
    ①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
    ②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。



http://www.00-edu.com/ks/shuxue/2/101/2019-04-21/1061112.html十二生肖
十二星座