题文
答案
据专家权威分析,试题“把下列根式化成最简二次根式:(1);(2);(3)(a>0,b>0);..”主要考查你对 二次根式的加减乘除混合运算,二次根式的化简,最简二次根式 等考点的理解。关于这些考点的“档案”如下:
二次根式的加减乘除混合运算,二次根式的化简最简二次根式
考点名称:二次根式的加减乘除混合运算,二次根式的化简
二次根式混合运算掌握:1、确定运算顺序。2、灵活运用运算定律。3、正确使用乘法公式。4、大多数分母有理化要及时。5、在有些简便运算中也许可以约分,不要盲目有理化。6、字母运算时注意隐含条件和末尾括号的注明。7、提公因式时可以考虑提带根号的公因式。
二次根式化简方法:二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。分母有理化:分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:(1)直接利用二次根式的运算法则:例:(2)利用平方差公式:例:(3)利用因式分解:例:(此题可运用待定系数法便于分子的分解)换元法(整体代入法):换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。例:在根式中,令,即可得到原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8
提公因式法:例:计算巧构常值代入法:例:已知x2-3x+1=0,求的值。分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。解:显然x≠0,x2-3x+1=0化为x+=3。 原式==2.
考点名称:最简二次根式
最简二次根式定义:被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。