零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 二次根式的加减乘除混合运算,二次根式的化简 > 正文 返回 打印

一个矩形的面积为60,长宽之比为5:2,求这个矩形的长和宽.-数学

[db:作者]  2019-04-21 00:00:00  互联网

题文

一个矩形的面积为60,长宽之比为5:2,求这个矩形的长和宽.
题型:解答题  难度:中档

答案

依题意设长为5x,则宽为2x,
则5x?2x=60,解得x=±

6
(舍去负值),
∴这个矩形的长为5

6
,宽为2

6

据专家权威分析,试题“一个矩形的面积为60,长宽之比为5:2,求这个矩形的长和宽.-数学-..”主要考查你对  二次根式的加减乘除混合运算,二次根式的化简,矩形,矩形的性质,矩形的判定  等考点的理解。关于这些考点的“档案”如下:

二次根式的加减乘除混合运算,二次根式的化简矩形,矩形的性质,矩形的判定

考点名称:二次根式的加减乘除混合运算,二次根式的化简

  • 二次根式的加减乘除混合运算:
    顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
    ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
    ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
    ③运算结果是根式的,一般应表示为最简二次根式。
    二次根式的化简:
    先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

  • 二次根式混合运算掌握:
    1、确定运算顺序。
    2、灵活运用运算定律。
    3、正确使用乘法公式。
    4、大多数分母有理化要及时。
    5、在有些简便运算中也许可以约分,不要盲目有理化。
    6、字母运算时注意隐含条件和末尾括号的注明。
    7、提公因式时可以考虑提带根号的公因式。

    二次根式化简方法:
    二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
    分母有理化:
    分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
    (1)直接利用二次根式的运算法则:
    例:
    (2)利用平方差公式:
    例:
    (3)利用因式分解:
    例:(此题可运用待定系数法便于分子的分解)

    换元法(整体代入法):
    换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
    例:在根式中,令,即可得到
    原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

    提公因式法:
    例:计算


    巧构常值代入法:
    例:已知x2-3x+1=0,求的值。
    分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
    解:显然x≠0,x2-3x+1=0化为x+=3。
    原式==2.

考点名称:矩形,矩形的性质,矩形的判定

  • 矩形:
    是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

  • 矩形的性质:
    1.矩形的4个内角都是直角;
    2.矩形的对角线相等且互相平分;
    3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
    4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
    5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
    6.顺次连接矩形各边中点得到的四边形是菱形

  • 矩形的判定
    ①定义:有一个角是直角的平行四边形是矩形
    ②定理1:有三个角是直角的四边形是矩形
    ③定理2:对角线相等的平行四边形是矩形
    ④对角线互相平分且相等的四边形是矩形
    矩形的面积:S矩形=长×宽=ab。

  • 黄金矩形:
    宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
    黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。



http://www.00-edu.com/ks/shuxue/2/103/2019-04-21/1067349.html十二生肖
十二星座