零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 最简二次根式 > 正文 返回 打印

观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;④由(5+4)(5-4)=1,得15+4=5-4;…(1)通过观察,将你发现的规律用含-数学

[db:作者]  2019-04-22 00:00:00  零零社区

题文

观察下列运算:
①由(

2
+1)(

2
-1)=1,得
1

2
+1
=

2
-1;
②由(

3
+

2
)(

3
-

2
)=1,得
1

3
+

2
=

3
-

2

③由(

4
+

3
)(

4
-

3
)=1,得
1

4
+

3
=

4
-

3

④由(

5
+

4
)(

5
-

4
)=1,得
1

5
+

4
=

5
-

4


(1)通过观察,将你发现的规律用含有n的式子表示出来,并注明n的取值;
(2)利用你发现的规律,计算:
1

2
+1
+
1

3
+

2
+
1

4
+

3
+
1

5
+

4
+…+
1

2011
+

2010
题型:解答题  难度:中档

答案

(1)
1

n+1
+

n
=

n+1
-

n
(n为正整数)

(2)原式=(

2
-1)+(

3
-

2
)+(

4
-

3
)+…+(

2011
-

2010

=

2
-1+

3
-

2
+

4
-

3
+…+

2011
-

2010

=

2011
-1.

据专家权威分析,试题“观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得..”主要考查你对  最简二次根式  等考点的理解。关于这些考点的“档案”如下:

最简二次根式

考点名称:最简二次根式

  • 最简二次根式定义:
    被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
    有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

  • 最简二次根式同时满足下列三个条件:
    (1)被开方数的因数是整数,因式是整式;
    (2)被开方数中不含有能开的尽的因式;
    (3)被开方数不含分母。

  • 最简二次根式判定:
    ①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
    ②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

    化二次根式为最简二次根式的方法和步骤:
    ①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
    ②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。



http://www.00-edu.com/ks/shuxue/2/104/2019-04-22/1071724.html十二生肖
十二星座