题文
“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆. (1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车? (2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货? |
题型:解答题 难度:中档
答案
试题分析:(1)本题是关于增产率的问题.设平均每年增长的百分率为x,由2013年1月、3月的产量可知,根据题意列方程,可求出增长的百分率.然后求得4月份的销量即可; (2)设A型车x辆,根据“A型车不少于B型车的2倍,但不超过B型车的2.8倍”列出不等式组,求出x的取值范围;然后求出利润W的表达式,根据一次函数的性质求解即可. 试题解析:(1)设前4个月自行车销量的月平均增长率为x . 根据题意列方程:64(1+x)2 ="100" , 解得x=-225%(不合题意,舍去), x= 25% 100×(1+25%)=125(辆) 答:该商城4月份卖出125辆自行车. (2)设进B型车x辆,则进A型车辆, 根据题意得不等式组: 2x≤≤2.8x , 解得:12.5≤x≤15,自行车辆数为整数,所以13≤x≤15, 销售利润W=(700-500)×+(1300-1000)x . 整理得:W=-100x+12000, ∵ W随着x的增大而减小, ∴ 当x=13时,销售利润W有最大值, 此时, =34, 所以该商城应进入A型车34辆,B型车13辆。 |
据专家权威分析,试题““低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运..”主要考查你对 一元二次方程的定义,一元二次方程的解法 等考点的理解。关于这些考点的“档案”如下:
一元二次方程的定义一元二次方程的解法
考点名称:一元二次方程的定义 考点名称:一元二次方程的解法
|