零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元二次方程的解法 > 正文 返回 打印

如图,ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB。(1)写出A、B两点的坐标;(2)若E为x正半轴上的点,且S△AOE=,求经过D-九年级数学

[db:作者]  2019-04-27 00:00:00  互联网

题文

如图,ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB。
(1)写出A、B两点的坐标;
(2)若E为x正半轴上的点,且S△AOE=,求经过D、E 两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出其中两个F点的坐标;若不存在,请说明理由。

题型:解答题  难度:偏难

答案

解:(1)A(0,4),B(3,0);
(2)∵点E在x轴上,



由已知可知D(6,4),

时,有

在△AOE中,
在△AOD中,


(3)存在,满足条件的点有四个:
(写出两个即可)。

据专家权威分析,试题“如图,ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元..”主要考查你对  一元二次方程的解法,求一次函数的解析式及一次函数的应用,菱形,菱形的性质,菱形的判定,相似三角形的判定  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的解法求一次函数的解析式及一次函数的应用菱形,菱形的性质,菱形的判定相似三角形的判定

考点名称:一元二次方程的解法

  • 一元二次方程的解:
    能够使方程左右两边相等的未知数的值叫做方程的解。
    解一元二次方程方程:
    求一元二次方程解的过程叫做解一元二次方程方程。

  • 韦达定理:
    一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
    一般式:ax2+bx+c=0的两个根x1和x2关系:
    x1+x2= -b/a
    x1·x2=c/a

  • 一元二次方程的解法:
    1、直接开平方法
    利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
    直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
    用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

    2、配方法
    配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
    配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

    3、公式法
    公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
    一元二次方程 的求根公式:
    求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

    4、因式分解法
    因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

考点名称:菱形,菱形的性质,菱形的判定

  • 菱形的定义:
    在一个平面内,有一组邻边相等的平行四边形是菱形。

  • 菱形的性质:
    ①菱形具有平行四边形的一切性质;
    ②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
    ③菱形的四条边都相等;
    ④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
    ⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。

  • 菱形的判定:
    在同一平面内,
    (1)定义:有一组邻边相等的平行四边形是菱形
    (2)定理1:四边都相等的四边形是菱形
    (3)定理2:对角线互相垂直的平行四边形是菱形
    菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
    菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。

考点名称:相似三角形的判定

  • 相似三角形:
    对应角相等,对应边成比例的两个三角形叫做相似三角形。
    互为相似形的三角形叫做相似三角形。

    例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'

  • 相似三角形的判定:
    1.基本判定定理
    (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
    (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
    (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
    (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
    2.直角三角形判定定理
    (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
    (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
    3.一定相似:
    (1).两个全等的三角形
    (全等三角形是特殊的相似三角形,相似比为1:1)
    (2).两个等腰三角形
    (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
    (3).两个等边三角形
    (两个等边三角形,三个内角都是60度,且边边相等,所以相似) 
    (4).直角三角形中由斜边的高形成的三个三角形。

  • 相似三角形判定方法:
    证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
    一、(预备定理)
    平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
    二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
    三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。 
    四、如果两个三角形的三组对应边成比例,那么这两个三角形相似
    五(定义)
    对应角相等,对应边成比例的两个三角形叫做相似三角形
    六、两三角形三边对应垂直,则两三角形相似。
    七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
    八、由角度比转化为线段比:h1/h2=Sabc

    易失误
    比值是一个具体的数字如:AB/EF=2
    而比不是一个具体的数字如:AB/EF=2:1



http://www.00-edu.com/ks/shuxue/2/107/2019-04-27/1086310.html十二生肖
十二星座